Complex Eigenvalues Analysis of the SN equations for deterministic coarse-mesh methods development applied in one-dimensional neutron shielding calculation

Authors

DOI:

https://doi.org/10.14295/vetor.v34i1.17482

Keywords:

Spectral analysis, Complex eigenvalues, Neutron shielding, Spectral-nodal methods, Neutron transport theory

Abstract

When using spectral nodal methods in the solution of fixed-source problems, one of the steps involves obtaining the intranodal homogeneous solution of the neutron transport equations in the discrete ordinates formulation (SN), where an eigenvalue problem is solved. Up until now, this process involved the emergence of N (even order for Gauss-Legendre quadrature) real and symmetric eigenvalues. However, in some cases, complex conjugates may appear in this step. Thus, we present a significant innovation in this type of computational modelling, by using the Euler's Formula to manipulate the local analytical solution and achieve a possible application of coarse-mesh methods in these cases. In order to showcase this technique, we use the spectral deterministic method to solve a model-problem with different sets of Gaussian quadrature, which came to compute hundreds of complex eigenvalues in its analytical solution, where a good precision was achieved when comparing the obtained numerical results with the reference.

Downloads

Download data is not yet available.

References

E. E. Lewis and W. F. Miller, Computational methods of neutron transport, 2nd ed. New York: Wiley, 1993.

A. M. Oliva, “Método espectral determinístico para a solução de problemas de transporte de nêutrons usando a formulação das ordenadas discretas,” Ph.D. dissertation, Programa de Pós-Graduação em Modelagem Computacional, IPRJ/UERJ, Nova Friburgo, Brasil, 2018, in Portuguese. Available at: http://www.bdtd.uerj.br/handle/1/13719

R. B. Libotte, “Método de malha grossa para solução numérica de problemas de blindagem de nêutrons em geometria unidimensional na formulação de ordenadas discretas com perspectivas a cálculos multidimensionais em geometria retangular,” Master’s thesis, Programa de Pós-Graduação em Modelagem Computacional, IPRJ/UERJ, Nova Friburgo, Brasil, 2021, in Portuguese. Available at: http://www.bdtd.uerj.br/handle/1/16461

R. C. de Barros, “A spectral nodal method for the solution of discrete ordinates problems in one- and two-dimensional cartesian geometry,” Ph.D. dissertation, University of Michigan, UMICH, Ann Arbor, Estados Unidos, 2018. Available at: https://deepblue.lib.umich.edu/handle/2027.42/105093

O. P. da Silva, “Um método de matriz resposta para cálculos de transporte multigrupos de energia na formulação de ordenadas discretas em meios não-multiplicativos,” Ph.D. dissertation, Programa de Pós-Graduação em Modelagem Computacional, IPRJ/UERJ, Nova Friburgo, Brasil, 2018, in Portuguese. Available at: http://www.bdtd.uerj.br/handle/1/13715

L. B. Barichello, L. C. Cabrera, and J. F. Prolo Filho, “An analytical approach for a nodal scheme of two-dimensional neutron transport problems,” Annals in Nuclear Energy, vol. 38, pp. 1310–1317, 2011. Available at: https://doi.org/10.1016/j.anucene.2011.02.004

M. P. de Abreu, “Métodos determinísticos livres de aproximações espaciais para a solução numérica dominante de problemas de autovalor multiplicativo na formulação de ordenadas discretas da teoria do transporte de nêutrons,” Ph.D. dissertation, COPPE/UFRJ, Rio de Janeiro, Brasil, 1996, in Portuguese.

S. A. Ramírez, “Cálculos de criticalidade usando a equação de transporte de nêutrons multigrupo unidimensional na formulação das ordenadas discretas a partir da solução analítica local,” Ph.D. dissertation, Programa de Pós-Graduação em Modelagem Computacional, IPRJ/UERJ, Nova Friburgo, Brasil, 2021, in Portuguese. Available at: http://www.bdtd.uerj.br/handle/1/16896

R. B. Libotte, H. Alves Filho, and F. C. da Silva, “Technique for reducing time in the calculation of eigenvalues and eigenvectors applied in neutron transport fixed-source problems,” Vetor, vol. 33, no. 1, 2023. Available at: https://doi.org/10.14295/vetor.v33i1.15155

S. Bochkanov, “Alglib.” Available at: www.alglib.net

Downloads

Published

2024-07-25

How to Cite

Libotte, R. B., Alves Filho, H., & Silva, F. C. da. (2024). Complex Eigenvalues Analysis of the SN equations for deterministic coarse-mesh methods development applied in one-dimensional neutron shielding calculation. VETOR - Journal of Exact Sciences and Engineering, 34(1), 68–77. https://doi.org/10.14295/vetor.v34i1.17482

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 

You may also start an advanced similarity search for this article.