Dureza e Textura do Cobre Eletrolítico Processado por ECAP em Temperatura Ambiente e a Morno
DOI:
https://doi.org/10.14295/vetor.v31i2.13743Palavras-chave:
Cobre, ECAP, Textura Cristalográfica, Densidade de Discordâncias , MicrodurezaResumo
Dentre os diversos métodos de deformação plástica severa (DPS), o processo de extrusão por canal equiangular (ECAP – Equal Channel Angular Pressing) é um dos mais populares. Este processo tem como principal característica produzir materiais com grãos ultrafinos ou até mesmo grãos nanométricos. Devido a estas mudanças microestruturais é possível gerar melhoria em algumas propriedades mecânicas como a resistência e ductilidade. Nesta perspectiva, pretendeu-se no presente trabalho avaliar as variações da propriedade mecânica dureza associada às alterações microestruturais e texturais do cobre puro, em função das variações de parâmetros do processo por DPS via ECAP. Para isto o material foi submetido a quatro passes através das rotas A (a amostra é pressionada repetidamente sem qualquer rotação entre cada passagem) e Bc (a amostra é rotacionada no mesmo sentido em 90° entre cada passagem) em temperatura ambiente e a morno. Por meio do resultado obtido verificou-se que na temperatura ambiente a rota Bc foi a que promoveu maior homogeneidade na microestrutura e enfraquecimento da textura após o quarto passe. O processamento do cobre por ECAP a morno promoveu um amolecimento das amostras e uma distribuição homogênea da dureza em ambas a rotas.
Downloads
Referências
G. Faraji, H. S. Kim and H. T. Kashi, “Mechanical properties of ultrafine-grained and nanostructured metals,” in Severe Plastic Deformation, Elsevier, 2018, p. 223-257. Available at: https://doi.org/10.1016/b978-0-12-813518-1.00007-2
T.G. Langdon, “Processing by severe plastic deformation: historical developments and current impact,” Materials Science Forum, vol. 667-669, pp. 9-14, 2010. Available at: https://doi.org/10.4028/www.scientific.net/msf.667-669.9
S. N. Alhajeri, N. Gao, T. G. Langdon, “Hardness homogeneity on longitudinal and transverse sections an aluminum alloy processed by ECAP”, Materials Science and Engineering A, vol. 528, pp. 3833-3840, 2011. Available at: https://doi.org/10.1016/j.msea.2011.01.074
A. T. Vijayashakthivel, T. N. Srikantha Dath and R. Krishnamurthy, “Response for copper to Equal Channel Angular Pressing with different processing temperature,” Procedia Engineering, vol. 97, pp. 56-63, 2014. Available at: https://doi.org/10.1016/j.proeng.2014.12.224
S. Ranjbar Bahadori, K. Dehghani and F. Bakhshandeh, “Microstructure, texture and mechanical properties of pure copper processed by ECAP and subsequent cold rolling,” Materials Science and Engineering: A, vol. 583, pp. 36-42, 2013. Available at: https://doi.org/10.1016/j.msea.2013.06.061
K. Neishi, Z. Horita and T. G. Langdon, “Achieving superplasticity in a Cu–40%Zn alloy through severe plastic deformation,” Scripta Materialia, vol. 45, no. 8, pp. 965–970, 2001. Available at: https://doi.org/10.1016/s1359-6462(01)01119-8
G. F. Vander Voort, Metallography: principles and practice. 2nd ed. New York: McGraw-Hill, 1984.
J. S. Kallend and G. J. Davies, “The development of texture in copper and copper-zinc alloys,” Texture, vol. 1, no. 1, pp. 51-69, 1972. Available at: https://doi.org/10.1155/tsm.1.51
R. Z. Valiev and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement,” Progress in Materials Science, vol. 51, no. 7, pp. 881-981, 2006. Available at: https://doi.org/10.1016/j.pmatsci.2006.02.003
M. Y. Alawadhi, S. Sabbaghianrad, Y. Huang and T. G. Langdon, “Direct influence of recovery behavior on mechanical properties in oxygen-free copper processed using different SPD techniques: HPT and ECAP,” Journal of Materials Research and Technology, vol. 6, no. 4, pp. 369-377, 2017. Available at: https://doi.org/10.1016/j.jmrt.2017.05.005
M. Y. Alawadhi, S. Sabbaghianrad, Y. Huang, and T. G. Langdon, “Evaluating the paradox of strength and ductility in ECAP at ambient temperature ultrafine-grained oxygen-free copper processed by ECAP at ambient temperature,” Materials Science and Engineering: A, vol. 802, article 140546, 202’. Available at: https://doi.org/10.1016/j.msea.2020.140546
H. Wen, Y. Zhao, T. D. Topping, D. Ashford, R. B. Figueiredo, C. Xu, T. G. Langdon, E. J. Lavernia, “Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained Cu processed by Equal-Channel Angular Pressing,” Advanced Engineering Materials, vol. 14, no. 3, pp. 185-194, 2012. Available at: https://doi.org/10.1002/adem.201100080
M. P. P. Leis, S. S. Carvalho, T. G. Sousa, S. I. V. Santana and L. P. Branda, “Comparative study by TEM, EBSD and microhardness of the microstructure of copper wiredrawn at 77 K and 295 K,” Tecnologia em Metalurgia, Materiais e Mineração, vol. 16, no. 2, pp. 279-283, 2019. Available at: https://doi.org/10.4322/2176-1523.20191731
T. G. Sousa, V. L. Sordi and L. P. Brandão, “Dislocation density and texture in copper deformed by cold rolling and Ecap,” Materials Research, vol. 21, no. 1, 2018. Available at: https://doi.org/10.1590/1980-5373-mr-2017-0515
I. L. Dillamore, R. E. Smallman and W. T. Roberts, “A determination of the stacking-fault energy of some pure FCC metals,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 9, no. 99, p. 517-526, 1964. Available at: https://doi.org/10.1080/14786436408222963
Y. Huang, S. Sabbaghianrad, A. I. Almazrouee, K. J. Al-Fadhalah, S. N. Alhajeri and T. G. Langdon, “The significance of self-annealing at room temperature in high purity copper processed by high-pressure torsion,” Materials Science and Engineering: A, vol. 656, pp. 55-66, 2016. Available at: https://doi.org/10.1016/j.msea.2016.01.027
F. Liu, H. Yuan, J. Yin and J. T. Wang, “Influence of stacking fault energy and temperature on microstructures and mechanical properties of fcc pure metals processed by equal-channel angular pressing,” Materials Science and Engineering: A, vol. 662, pp. 578-587, 2016. Available at: https://doi.org/10.1016/j.msea.2016.03.022
A. Zi, “Pure copper processed by extrusion preceded equal channel angular pressing,” Materials Characterization, vol. 61, no. 2, pp. 141-144, 2010. Available at: https://doi.org/10.1016/j.matchar.2009.11.03
A. M. Kliauga, W. R. Sussai, M. Ferrante, V. L. Sordi, R. E. Bolmaro, “Texture and lankford factor of AA1050 alloy deformed by angular channel extrusion and heat treated”, pp. 1214-1223, in 67th ABM international congress, 2012.
O. F. Higuera and J. M. Cabrera, “Texture analysis in ultrafine grained coppers processed by equal channel angular pressing,” Materials Research, vol. 16, no. 3, pp. 619–624, 2013. Available at: https://doi.org/10.1590/s1516-14392013005000032
A. I. Alateyah, M. M. Z. Ahmed, Y. Zedan, H. A. El-Hafez, M. O. Alawad, and W. H. El-Garaihy, “Experimental and numerical investigation of the ECAP processed copper: microstructural evolution, crystallographic texture and hardness homogeneity,” Metals, vol. 11, no. 4, pp. 607, 2021. Available at: https://doi.org/10.3390/met11040607
A. P. Gulháev, Metals and their Alloys – Volume 1 – Structures, properties and industrial application (General and structural metallography). Moscow: Mir, 1981.
F. Liu, T. Fa, P. H. Chen and J. T. Wang, “Steady-state characteristics of FCC pure metals processed by severe plastic deformation: experiments and modelling,” Philosophical Magazine, vol. 100, no. 1, pp. 62–83, 2020. Available at: https://doi.org/10.1080/14786435.2019.1671621
A. Rohatgi, K. S. Vecchio and G. T. Gray, “The influence of stacking fault energy on the mechanical behavior of Cu and Cu-Al alloys: Deformation twinning, work hardening, and dynamic recovery,” Metallurgical and Materials Transactions A, vol. 32, no. 1, pp. 135–145, 2001. Available at: https://doi.org/10.1007/s11661-001-0109-7
G. Carro, A. Muñoz, B. Savoini, M. A. Monge and R. Pareja, “Processing, microstructure and mechanical characterization of dispersion strengthened Cu-1%Y,” Fusion Engineering and Design, vol. 138, pp. 321–331, 2019. Available at: https://doi.org/10.1016/j.fusengdes.2018.11.058