Industrial processes alarm prediction using non-supervised classification

Authors

  • Sergio H. Braunstein
  • Andre P. Lerm
  • Rafael A. R. Lerm
  • Adriano V. Werhli
  • Silvia Silva da Costa Botelho
  • Edwaldo O. Lippe

Keywords:

Árvores de regressão, Classificação não-supervisionada, Manutenção preditiva, Séries temporais

Abstract

In this work an alarm prediction system is proposed. Its main aims are to contribute to the establishment of predictive industrial maintenance guidelines and to produce a management decision support tool. The proposed system obtains readings from many sensors that are installed in the industrial plant, extract its characteristics and evaluates the equipment’s health. The diagnosis and prognosis implies in a classification of the industrial plant’s operational condition. Classification and regression trees are applied in this paper. A measurement sample from 73 sensors installed in a hydroelectric power plant is utilized to test and validate the proposed methodology. The measurements were obtained in a 15 months period.

Downloads

Download data is not yet available.

Author Biographies

Sergio H. Braunstein

Mestrando do Programa de Pós-Graduação em Modelagem Computacional – FURG.

Andre P. Lerm

Doutor em Engenharia Elétrica , Professor do Instituto Federal Sul-rio-grandense – Pelotas.

Rafael A. R. Lerm

Acadêmico do Curso de Engenharia de Computação – FURG.

Adriano V. Werhli

Professor do Pós-Graduação em Modelagem Computacional – FURG; Doutor em Informática.

Silvia Silva da Costa Botelho

Doutorado em Informática e Telecomunicações - LAAS/CNRS/Franca em 2000. Atualmente e professora adjunta da FURG.

Mais informações: Currículo Lattes

Edwaldo O. Lippe

Gerente de Engenharia e Planejamento – AES Tietê SA.

Published

2010-12-10

How to Cite

Braunstein, S. H., Lerm, A. P., Lerm, R. A. R., Werhli, A. V., Botelho, S. S. da C., & Lippe, E. O. (2010). Industrial processes alarm prediction using non-supervised classification. VETOR - Journal of Exact Sciences and Engineering, 19(1), 37–48. Retrieved from https://periodicos.furg.br/vetor/article/view/1706

Issue

Section

Articles

Most read articles by the same author(s)