Termomechanical Treatment of Recycled Polyethylene Terephthalate (PET) Refuse: A Way to Avoid its Waste
DOI:
https://doi.org/10.14295/vetor.v34i1.16312Keywords:
Polyethylene terephthalate (PET) refuse, Hot press, Drilling and manual sawing processes, Mechanical properties, Compression testAbstract
During the recycling process of polyethylene terephthalate (PET), particles with low granulometry (refuse) may stick to the screw of the extruder and be discarded. In order to avoid its disposal, this research carries out a hot pressing of this refuse to allow its use. First, the ideal duration of hot pressing for this case was determined. Next, the resulting material was evaluated by drilling and manual sawing processes, and its mechanical properties were obtained by compression tests. The medium elastic modulus obtained by experimental tests was 1.13 GPa and, its medium strength, 68.5 MPa. Yet, the resulting material presented satisfactory performance by drilling and manual sawing processes.
Downloads
References
A. F. Ávila and M. V. Duarte, “A mechanical analysis on recycled PET/HDPE composites,” Polymer Degradation and Stability, vol. 80, no. 2, pp. 373-382, 2003. Available at: https://doi.org/10.1016/S0141-3910(03)00025-9
A. L. F. M. Giraldi, J. R. Bartoli, J. I. Velasco, and L. H. I. Mei, “Glass fibre recycled poly(ethylene terephthalate) composites: mechanical and thermal properties,” Polymer Testing, vol. 24, no. 4, pp. 507–512, 2005a. Available at: https://doi.org/10.1016/j.polymertesting.2004.11.011
A. L. F. M. Giraldi, R. C. Jesus, and L. H. I. Mei, “The influence of extrusion variables on the interfacial adhesion and mechanical properties of recycled PET composites,” Journal of Materials Processing Technology, vol. 162–163, pp. 90–95, 2005b. Available at: https://doi.org/10.1016/j.jmatprotec.2005.02.046
R. M. Meri, J. Zicans, R. Maksimovs, T. Ivanova, M. Kalnins, R. Berzina, and G. Japins, “Elasticity and long-term behavior of recycled polyethylene terephthalate (rPET)/montmorillonite (MMT) composites,” Composite Structures, vol. 111, pp. 453-458, 2014. Available at: https://doi.org/10.1016/j.compstruct.2014.01.017
Z. Zhang, C. Wang, and K. Mai, “Reinforcement of recycled PET for mechanical properties of isotactic polypropylene,” Advanced Industrial and Engineering Polymer Research, vol. 2, no. 2, pp. 69-76, 2019. Available at: https://doi.org/10.1016/j.aiepr.2019.02.001
R. Tomisawa, T. Ikaga, K. H. Kim, Y. Ohkoshi, K. Okada, H. Masunaga, T. Kanaya, M. Masuda, and Y. Maeda, “Effect of melt spinning conditions on the fiber structure development of polyethylene terephthalate”, Polymer, vol. 116, pp. 367-377, 2017. Available at: https://doi.org/10.1016/j.polymer.2016.12.077
H. Wu, S. Lv, Y. He, and J. P. Qu, “The study of the thermomechanical degradation and mechanical properties of PET recycled by industrial-scale elongational processing,” Polymer Testing, vol. 77, p. 105882, 2019. Available at: https://doi.org/10.1016/j.polymertesting.2019.04.029
N. E. Zander, M. Gillan, Z. Burckhard, and F. Gardea, “Recycled polypropylene blends as novel 3D printing materials,” Additive Manufacturing, vol. 25, pp. 122–130, 2019. Available at: https://doi.org/10.1016/j.addma.2018.11.009
F. Ronkay, B. Molnar, and G. Dogossy, “The effect of mold temperature on chemical foaming of injection molded recycled polyethylene-terephthalate,” Thermochimica Acta, vol. 651, pp. 65–72, 2017. Available at: https://doi.org/10.1016/j.tca.2017.02.013
S. Li, I. C. Vela, M. Järvinen, and M. Seemann, “Polyethylene terephthalate (PET) recycling via steam gasification –The effect of operating conditions on gas and tar composition,” Waste Management, vol. 130, pp. 117–126, 2021. Available at: https://doi.org/10.1016/j.wasman.2021.05.023
C. Schneider, S. Kazemahvazi, M. Åkermo, and D. Zenkert, “Compression and tensile properties of self-reinforced poly(ethylene terephthalate)-composites,” Polymer Testing, vol. 32, no. 2, pp. 221-230, 2013. Available at: https://doi.org/10.1016/j.polymertesting.2012.11.002
H. C. Zhao, Y. Y. Yec, J. J. Zeng, J. K. Zhoud, and Y. Ouyang, “Polyethylene terephthalate fibre-reinforced polymer-confined concrete encased high-strength steel tube hybrid square columns: Axial compression tests,” Structures, vol. 28, pp. 577-588, 2020. Available at: https://doi.org/10.1016/j.istruc.2020.08.078
P. Mazzuca, J. P. Firmo, J. R. Correia, and E. Castilho, “Mechanical behaviour in shear and compression at elevated temperature of polyethylene terephthalate (PET) foam,” Journal of Building Engineering, vol. 42, pp. 102526, 2021. Available at: https://doi.org/10.1016/j.jobe.2021.102526
Y. L. Bian, H. W. Chai, S. J. Ye, H. L. Xie, X. H. Yao, and Y. Cai, “Compression and spallation properties of polyethylene terephthalate under plate impact loading,” International Journal of Mechanical Sciences, vol. 211, p. 106736, 2021. Available at: https://doi.org/10.1016/j.ijmecsci.2021.106736
P. Hao, S. W. F. Spronk, W. Van Paepegem, and F. A. Gilabert, “Hydraulic-based testing and material modelling to investigate uniaxial compression of thermoset and thermoplastic polymers in quasistatic-todynamic regime,” Materials & Design, vol. 224, p. 111367, 2022. Available at: https://doi.org/10.1016/j.matdes.2022.111367
Y. Dandekar, R. S. Kumar, and M. S. Rajput, “Compressive property of newly developed composite material from Polyethylene terephthalate (PET) waste and mild steel powder,” Materials Today: Proceedings, vol. 27, pp. 83-86, 2020. Available at: https://doi.org/10.1016/j.matpr.2019.08.241
G. A. Ferreira, “Avaliação das propriedades mecânicas de peças densas a partir do processo de prensagem a quente de pó de polietileno tereftalato (PET) reciclado,” Bachelor’s dissertation, Federal University of Juiz de Fora – UFJF, 2016 (in Portuguese).
B. Stuart, Polymer Analysis, Chichester: John Wiley & Sons, 2003.
Y. Yang, M. Niu, J. Li, B. Xue, and J. Dai, “Preparation of carbon microspheres coated magnesium hydroxide and its application in polyethylene terephthalate as flame retardant,” Polymer Degradation and Stability, vol. 134, pp. 1-9, 2016. Available at: https://doi.org/10.1016/j.polymdegradstab.2016.09.019