Application Of Machine Learning Models To Predict Warping Of Plastic Automotive Parts

Authors

DOI:

https://doi.org/10.63595/vetor.v35i1.18192

Keywords:

Injection molding, Experimental planning, Statistical methods, Machine learning models

Abstract

In order to manufacture plastic parts with complex geometries on a large scale, injection molding is one of the most widely used manufacturing processes. One of the criteria commonly considered when developing new products is dimensional quality, a factor directly associated with reducing part warpage. In the automotive industry, the manufacture of parts requires high dimensional precision, as many components have an aesthetic purpose or require perfect fits. Therefore, this work employs experimental designs, numerical simulations, statistical methods, and machine learning models to predict the warpage of an automotive cup holder. The polymers used were polypropylene (PP) and acrylonitrile butadiene styrene (ABS). The results indicated that the regression models developed for predicting warpage performed better with the ABS data. Regarding the classification models, both achieved an accuracy rate exceeding 90%. These findings provide useful tools during the mold tryout phase, helping to reduce time, cost, and material waste.

Downloads

Download data is not yet available.

References

K. Cai, T. O'Leary, R. Mulyana, and J. M. Castro, “Effect of processing parameter changes on mechanical properties during injection molding: Amorphous versus semi‐crystalline materials,” Polymer Engineering & Science, vol. 4, no. 6, pp. 2868–2874, 2024. Available at: https://doi.org/10.1002/pen.26731

J. Shoemaker, Moldflow design guide: a resource for plastics engineers, Hanser Verlag, 2006.

J. G. Kovács and B. Sikló, “Investigation of cooling effect at corners in injection molding,” International Communications in Heat and Mass Transfer, vol. 38, no. 10, pp. 1330–1334, 2011. Available at: https://doi.org/10.1016/j.icheatmasstransfer.2011.08.007

P. Marconi, E. Amarante, C. Ferreira, V. Beal, and A. Ribeiro Júnior, “Steel and Aluminum Molds: The Effect of Thickness on Productivity and Part Quality,” SAE International Journal of Materials and Manufacturing, vol. 17, no. 4, pp. 341–353, 2024. Available at: https://doi.org/10.4271/05-17-04-0024

E. M. S. Amarante, P. G. C. S. Marconi, J. P. R. B. Oliveira, V. E. Beal, C. V. Ferreira, and A. S. Ribeiro Júnior, “Determining thermoplastic injection parameters using the gradient-based optimisation technique and the heuristic method,” in XII Congresso Nacional de Engenharia Mecânica, Natal-RN, Brasil, 2024.

D. C. Montgomery, Diseño y análisis de experimentos, México: Iberoamérica, 1991.

E. V. C. Galdamez and L. C. R. Carpinetti, “Aplicação das técnicas de planejamento e análise de experimentos no processo de injeção plástica,” Gestão & Produção, vol. 11, no. 1, pp. 121–134, 2004. Available at: https://doi.org/10.1590/S0104-530X2004000100011

Z. Obermeyer and E. J. Emanuel, “Predicting the future-big data, machine learning, and clinical medicine,” New England Journal of Medicine, vol. 375, no. 13, pp. 1216–1219, 2016. Available at: https://doi.org/10.1056/NEJMp1606181

C. O. Affonso and R. J. Sassi, “Aplicação de redes Neuro Fuzzy ao processamento de peças automotivas por meio de injeção de polímeros,” Production, vol. 25, no. 1, pp. 157–169, 2015. Available at: https://doi.org/10.1590/S0103-65132014005000005

R. Manickam, “Back Propagation Neural Network for Prediction of Some Shell Moulding Parameters,” Periodica Polytechnica Mechanical Engineering, vol. 60, no. 4, pp. 203–208, 2016. Available at: https://doi.org/10.3311/PPme.8684

R. J. Bensingh, R. Machayaram, R. Boopathy, and C. Jebaraj, “Injection molding process optimization of a bi-aspheric lens using hybrid artificial neural networks (ANNs) and particle swarm optimization (PSO)”, Measurement, vol. 134, pp. 359–374, 2019. Available at: https://doi.org/10.1016/j.measurement.2018.10.066

R. Sedighi, M. S. Meiabardi, and M. Sedighi, “Optimisation of gate location based on weld line in plastic injection moulding using computer-aided engineering, artificial neural network, and genetic algorithm,” International Journal of Automotive and Mechanical Engineering, vol. 14, no. 3, pp. 4419-4431, 2017. Available at: https://doi.org/10.15282/ijame.14.3.2017.3.0350

O. Ogorodnyk, O. V. Lyngstad, M. Larsen, K Wang, and K. Martinsen, “Application of machine learning methods for prediction of parts quality in thermoplastics injection molding,” in Advanced Manufacturing and Automation VIII 8, Wang, K., Wang, Y., Strandhagen, J., Yu, T. (Eds). Changzhou: China, 2019, pp. 237–244. Available at: https://doi.org/10.1007/978-981-13-2375-1_30

D. O. Kazmer, Injection Mold Design Engineering, 2nd edition, Hanser, 2016.

S. Jayapalan, “8. Optimization of Injection Molding Process Parameters for Minimizing Volumetric Shrinkage and Warpage Using Moldflow Simulation and Taguchi Analysis Technique,” in Polymers and Composites Manufacturing, Kumar, K. and Paulo Davim, J. (Eds.), Berlin, Germany: De Gruyter, 2020, chap. 8, pp. 137–152. Available at: https://doi.org/10.1515/9783110655049-008

M. A. Barghash and F. A. Alkaabneh, “Shrinkage and Warpage Detailed Analysis and Optimization for the Injection Molding Process Using Multistage Experimental Design,” Quality Engineering, vol. 26, no. 3, pp. 319–334, 2014. Available at: https://doi.org/10.1080/08982112.2013.852679

R. A. Johnson and D.W. Wichern, Applied multivariate statistical analysis, Madison: Prentice Hall International, 1998.

Z. Mustaffa and Y. Yusof, “A Comparison of Normalization Techniques in Predicting Dengue Outbreak,” in 2010 International Conference on Information and Finance (ICIF 2010). Kuala Lumpur: Malaysia, 2010, pp. 345–349. Available at: https://repo.uum.edu.my/id/eprint/3163/

E. M. de S. Amarante, V. G. S. F. dos Santos, P. G. C. de S. Marconi, A. S. Ribeiro Júnior, V. E. Beal, and C. V. Ferreira, “Estimativa da vida útil em moldes em alumínio por meio de regressões não-lineares,” in 12º Congresso Brasileiro de Engenharia de Fabricação. Brasília-DF: Brasil, 2023.

F. Bre, J. M. Gimenez, and V. D. Fachinotti, “Prediction of wind pressure coefficients on building surfaces using artificial neural networks,” Energy and Buildings, vol. 158, pp. 1429-1441, 2018. Available at: https://doi.org/10.1016/j.enbuild.2017.11.045

S. Haykin, Neural Networks: a comprehensive foundation, New York: Willey & Sons, 2001.

H. Tercan, A. Guajardo, J. Heinisch, T. Thiele, C. Hopmann, and T. Meisen “Transfer-learning: bridging the gap between real and simulation data for machine learning in injection molding,” Procedia CIRP, vol. 72, pp. 185–190, 2018. Available at: https://doi.org/10.1016/j.procir.2018.03.087

K-M. Tsai and H-J. Luo. “An inverse model for injection molding of optical lens using artificial neural network coupled with genetic algorithm,” Journal of Intelligent Manufacturing, vol. 28, pp. 473–487, 2017. Available at: https://doi.org/10.1007/s10845-014-0999-z

K-M. Tsai and H-J. Luo “Comparison of injection molding process windows for plastic lens established by artificial neural network and response surface methodology,” The International Journal of Advanced Manufacturing Technology, vol. 77, pp. 1599–1611, 2015. Available at: https://doi.org/10.1007/s00170-014-6366-6

N. Arulsudar, N. Subramanian, and R. Murthy, “Comparison of artificial neural network and multiple linear regression in the optimization of formulation parameters of leuprolide acetate loaded liposomes,” Journal of Pharmacy & Pharmaceutical Sciences, vol. 8, no. 2, pp. 243–258, 2005. Available at: https://sites.ualberta.ca/~csps/JPPS8(2)/R.Murthy/leuprolide.htm

C. Hopmann, P. Bibow, T. Kosthorst, and Y. Lockner, “Process setup in injection moulding by human-machine-interfaces and AI,” in 30th International Colloquium Plastics Technology 2020, Aachen: Germany, 2020.

Y. Xu and R. Goodacre, “On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning,” Journal of Analysis and Testing, vol. 2, pp. 249–262, 2018. Available at: https://doi.org/10.1007/s41664-018-0068-2

M. K. Uçar, M. Nour, H. Sindi, and K. Polat, “The Effect of Training and Testing Process on Machine Learning in Biomedical Datasets,” Mathematical Problems in Engineering, vol. 2020, p. 836236, 2020. Available at: https://doi.org/10.1155/2020/2836236

R. Kohavi, “A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection,” in Proceedings of the 14th International Joint Conference on Artificial intelligence, Montreal: Canada, 1995, pp. 1137–1143.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, New York: Springer, 2009. Available at: https://doi.org/10.1007/978-0-387-84858-7

H. Rees, Mold Engineering, Munich-Germany: Hanser Publications, 2002.

D. M. Bryce, Plastic injection molding: Mold design and construction fundamentals, Society of Manufacturing Engineers, 1998.

Downloads

Published

2025-06-29

How to Cite

Amarante, E. M. de S., Oliveira, J. P. R. B. de, Marconi, P. G. C. de S., & Ribeiro Júnior, A. S. (2025). Application Of Machine Learning Models To Predict Warping Of Plastic Automotive Parts. VETOR - Journal of Exact Sciences and Engineering, 35(1), e18192. https://doi.org/10.63595/vetor.v35i1.18192

Issue

Section

Special Section XXVII ENMC/XV ECTM