Characterization of the amorphous metallic alloy Al85Ni10Sm5
DOI:
https://doi.org/10.14295/vetor.v34i2.17954Keywords:
Amorphous Al-Ni-Sm Alloy, Physical characterization, Electrochemical characterizationAbstract
Aluminum alloys are highly significant materials in the industry due to their excellent mechanical properties and corrosion resistance. These alloys are widely used in various applications in the automotive and aerospace industries. The addition of alloying elements such as nickel, copper, and magnesium allows for different combinations of properties, which makes the alloys more versatile. Among aluminum alloys, the amorphous alloys studied in this work have received increasing attention due to their unique properties. Additionally, there is a limited amount of research on these materials, unlike the numerous studies already conducted on conventional crystalline structure alloys. In this work, the metallic alloy with the atomic composition Al85Ni10Sm5 and an amorphous structure, produced by melt-spinning, was structurally, thermally, and electrochemically characterized. The structural and thermal characterization was performed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques to confirm its amorphous nature. The electrochemical characterization was carried out through open circuit and potentiodynamic polarization tests in an aqueous medium with 3.5% mass NaCl at room temperature. The results indicate that the fully amorphous alloy is of the glassy type, with Tg = 522 K, and exhibits low thermal stability (∆Tx = 16 K). The electrochemical tests show a corrosion potential of approximately -520 mV relative to the saturated calomel reference electrode, suggesting that the amorphous alloy is more corrosion-resistant than pure aluminum in its crystalline state.
Downloads
References
E. V. da Costa, M. L. da Silva, M. P. M. de Carvalho, D. M. da Cruz, L. C. R. Aliaga, and I. N. Bastos, “Electrochemical characterization of amorphous and crystalline NI62NB38 and NI59.24NB37.76B3.00 alloys,” VETOR - Revista de Ciências Exatas e Engenharias, vol. 34, no. 1, pp. 119–129, 2024. Available at: https://doi.org/10.14295/vetor.v34i1.17711
H. Mumtaz, M. Farhan, M. Amjad, F. Riaz, Ali H. Kazim, M. Sultan, M. Farooq, M.A. Mujtaba, I. Hussain, M. Imran, S. Anwar, A. M. El-Sherbeeny, F. A. Siddique, S. Armaković, Q. Ali, I. A. Chaudhry, and A. Pettinau, “Biomass waste utilization for adsorbent preparation in CO2 capture and sustainable environment applications,” Sustainable Energy Technologies and Assessments, vol. 46, p. 101288, 2021. Available at: https://doi.org/10.1016/j.seta.2021.101288
M. Farooq, M. E. M. Soudagar, M. Imran, M. Arslan, M. S. Tariq, A. Pettinau and J. M. Andresen, “Carbon capture for sustainable environment in developing countries,” In: M. Asif (eds) Energy and Environmental Security in Developing Countries. Advanced sciences and technologies for security applications, Springer, Cham, 2021. Available at: https://doi.org/10.1007/978-3-030-63654-8_21
X. Piao and S. Managi, “Global evaluation of the natural environment and household income for sustainable development,” Sustainable Futures, vol. 8, p. 100254, 2024. Available at: https://doi.org/10.1016/j.sftr.2024.100254
B. He, Y. Lu, J. Jiang, Z. Zhan, B. Ni, L. Lv, and T. Pan, “Comprehensive hydrogen storage properties of free-V Ti1-Zr Mn0.9Cr07Fe0.1 alloys with different Zr substitution content,” Progress in Natural Science: Materials International, in press, 2024. Available at: https://doi.org/10.1016/j.pnsc.2024.07.011
J. Zhu, H. Liu, J. Kong, J. Wang, W. Ji, Z. Wei, X. Yao, and X. Wang, “Exploring hydrogen storage safety research by bibliometric analysis,” International Journal of Hydrogen Energy, vol. 81, pp. 27–39, 2024. Available at: https://doi.org/10.1016/j.ijhydene.2024.07.285
A. G. Olabi, A. S. Bahri, A. A. Abdelghafar, A. Baroutaji, E. T. Sayed, A. H. Alami, H. Rezk, and M. A. Abdelkareem, “Large-scale hydrogen production and storage technologies: Current status and future directions,” International Journal of Hydrogen Energy, vol. 46, no. 45, pp. 23498–23528, 2021. Available at: https://doi.org/10.1016/j.ijhydene.2020.10.110
Q. Zeng, Z. Lv, S. Li, B. Yang, J. He, and J. Song, “Electrolytes for liquid metal batteries,” Materials Research Bulletin, vol. 170, p. 112586, 2024. Available at: https://doi.org/10.1016/j.materresbull.2023.112586
H. Niu, N. Zhang, Y. Lu, Z. Zhang, M. Li, J. Liu, N. Zhang, W. Song, Y. Zhao, and Z. Miao, “Strategies toward the development of high-energy-density lithium batteries,” Journal of Energy Storage, vol. 88, p. 111666, 2024. Available at: https://doi.org/10.1016/j.est.2024.111666
N. Nasajpour-Esfahani, H. Garmestani, M. Bagheritabar, D. J. Jasim, D. Toghraie, S. Dadkhah, and H. Firoozeh, “Comprehensive review of lithium-ion battery materials and development challenges,” Renewable and Sustainable Energy Reviews, vol. 203, p. 114783, 2024. Available at: https://doi.org/10.1016/j.rser.2024.114783
M. Metikoš-Huković, Z. Grubač, R. Babić, and N. Radić, “Corrosion resistance of amorphous aluminium–molybdenum alloys in an acidic chloride environment,” Corrosion Science, vol. 52, no. 2, pp. 352–359, 2010. Available at: https://doi.org/10.1016/j.corsci.2009.09.021
W. J. Botta, J. E. Berger, C. S. Kiminami, V. Roche, R. P. Nogueira, and C. Bolfarini, “Corrosion resistance of Fe-based amorphous alloys,” Journal of Alloys and Compounds, vol. 586, pp. S105–S110, 2014. Available at: https://doi.org/10.1016/j.jallcom.2012.12.130
S. Xie, J. Zhao, S. Li, and J. Su, “Enhanced mechanical properties of Zr-Cu-Al-Ni bulk amorphous alloys by Ag and O doping,” Journal of Alloys and Compounds, vol. 957, p. 170186, 2023. Available at: https://doi.org/10.1016/j.jallcom.2023.170186
T. W. Wilson, J. M. Bai, and H. Choo, “Enhanced thermal stability of amorphous aluminum alloys through microalloying,” Materials Letters, vol. 62, no. 23, pp. 3790–3792, 2008. Available at: https://doi.org/10.1016/j.matlet.2008.03.063
X. Xu, W. Li, B. Wan, S. Jin, K. Chen, and F. Su, “Extremely improved the corrosion resistance and anti-wear behavior of aluminum alloy in 3.5% NaCl solution via amorphous CrAlN coating protection,” Corrosion Science, vol. 230, p. 111952, 2024. Available at: https://doi.org/10.1016/j.corsci.2024.111952
X. Wang, Z. Ding, S. Li, and L. Peng, “Computation method for mechanical performances of die-cast aluminum alloys based on non-uniform material properties,” Materials Today Communications, vol. 40, p. 109683, 2024. Available at: https://doi.org/10.1016/j.mtcomm.2024.109683
H. Fan, J. Hu, Y. Wang, H. Zhang, W. Guo, J. Li, S. Xu, H. Li and P. Liu, “A review of laser additive manufacturing (LAM) aluminum alloys: Methods, microstructures and mechanical properties,” Optics & Laser Technology, vol. 175, p. 110722, 2024. Available at: https://doi.org/10.1016/j.optlastec.2024.110722
F. Han, C. Li, Y. Wang, Z. Pai, Y. Meng, M. Cao, Y. Liu, P. He, X. Ma, L. Xue and C. Wang, “Comparative study on corrosion property of 2219 aluminum alloy sheet and additively manufactured 2319 aluminum alloy,” Journal of Materials Research and Technology, vol. 30, pp. 3178–3185, 2024. Available at: https://doi.org/10.1016/j.jmrt.2024.04.036
H. Liu, J. Ying, Z. Chen, C. Ma, S. Qian, Y. Ouyang and X. Liu, “Research status of mechanical properties of aluminum alloy grid structure,” Structures, vol. 61, p. 105967, 2024. Available at: https://doi.org/10.1016/j.istruc.2024.105967
M. Pourbaix, Atlas of electrochemical equilibria in aqueous solutions, NACE International and Cebelcor, Houston, USA, 1974.
L. C. R. Aliaga, C. R. M. Afonso, J. E. Spinelli, C. S. Kiminami, C. Bolfarini, and W. J. Botta, “Advanced characterization of Al–Ni-Sm amorphous alloys with dispersion of round Pb-rich nanoparticles,” Journal of Materials Research and Technology, vol. 27, pp. 6892–6899, Oct. 2023. Available at: https://doi.org/10.1016/j.jmrt.2023.10.169
F. G. Cuevas, S. Lozano-Perez, R. M. Aranda, and E. S. Caballero, “Crystallisation of amorphous Al-Sm-Ni-(Cu) alloys,” Intermetallics, vol. 112, p. 106537, 2019. Available at: https://doi.org/10.1016/j.intermet.2019.106537
L. Li, J. Yang, and X. Shen, “Measuring the hydration product proportion in composite cement paste by using quantitative BSE-EDS image analysis: A comparative study” Measurement, vol. 199, p. 111290, May 2022. Available at: https://doi.org/10.1016/j.measurement.2022.111290
P. M. Natishan and W. E. O’Grady, “Chloride ion with oxide-covered aluminum leading to pitting corrosion: A review,” Journal of the Electrochemical Society, vol. 161, pp. C421-C432, 2014. Available at: https://doi.org/10.1149/2.1011409jes
J. A. Moreto, C. E. B. Marino, W. W. B. Filho, L. A. Rocha, and J. C. S. Fernandes, “SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication,” Corrosion Science, vol. 84, pp. 30–41, 2014. Available at: https://doi.org/10.1016/j.corsci.2014.03.001