Multivariate posterior distribution with gaussian approximation, using R.

Authors

  • Paul Gerhard Kinas
  • Merhy Heli Paiva Rodrigues

Keywords:

Inferência bayesiana, R, Modelo de crescimento, Distribuição Gaussiana multivariada

Abstract

In bayesian statistical inference the posterior probability distribution of unknown model parameters is of central importance. This paper uses the tools of the R language to obtain simulated posterior samples as an approximated Gaussian multivariate distribution. The method is illustrated with inference for the Schnute growth curve and applied to the fransciscana dolphin (Pontoporia blainvillei) from southern Brazil.

Downloads

Download data is not yet available.

Author Biography

Paul Gerhard Kinas

Professor do Departamento de Matemática/FURG, Doutor em Estatística pela University of British Columbia (Canadá)

Mais informações: Currículo Lattes

Published

2010-12-01

How to Cite

Kinas, P. G., & Rodrigues, M. H. P. (2010). Multivariate posterior distribution with gaussian approximation, using R. VETOR - Journal of Exact Sciences and Engineering, 17(1), 16–22. Retrieved from https://periodicos.furg.br/vetor/article/view/1656

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.