Parameter N Influence on the Fixed-Talbot Algorithm for the Laplace Transform Numerical Inversion

Authors

  • George Ricardo Libardi Calixto Universidade Federal do Rio Grande
  • Elisandra Konflanz Freitas Universidade Federal do Rio Grande https://orcid.org/0000-0003-3176-6968
  • Juciara Alves Ferreira Universidade Federal do Rio Grande
  • Bárbara Denicol do Amaral Rodriguez Universidade Federal do Rio Grande https://orcid.org/0000-0001-8211-6418
  • João Francisco Prolo Filho Universidade Federal do Rio Grande

DOI:

https://doi.org/10.14295/vetor.v32i1.13754

Keywords:

Laplace Transform, Inverse Transform, Numerical Methods, Fixed-Talbot

Abstract

In this paper, Fixed-Talbot method computational aspects are explored for Laplace Transform numerical inversion and its efficiency in the treatment of a set of elementary functions of an exponential, oscillatory and logarithmic nature, based on the influence investigation of free parameter N. The numerical results are compared to the analytical solution while calculating the absolute error. The best value for N was determined in each studied function class, where the method presents satisfactory results. It was observed that increasing the number of terms in the summation for approximation (beyond the optimal value) doesn’t imply obtaining more refined results. In general, based on the data obtained, it was concluded that Fixed-Talbot method is efficient for the inversion of all classes of elementary functions evaluated in this article.

Downloads

Download data is not yet available.

References

G. V. Milovanovic and A. S. Cvetkovic, “Numerical inversion of the Laplace Transform,” Facta

universitatis-series: Electronics and Energetics, vol. 18, pp. 515–530, 2005. Available at: https:

//doi.org/10.2298/FUEE0503515M

S. L. D. M. Junqueira, “Aplicação da Transformada de Laplace ao problema inverso da condução do calor,” Master’s thesis, Departamento de Energia, Faculdade de Engenharia, Universidade Estadual de Campinas, Campinas, Brasil, 1990. Available at: http://bdtd.ibict.br/vufind/Record/CAMP_ffac723bdf1a5e2a75f63237138ebe73

M. Raoofian-Naeeni, R. Campagna, M. Eskandari-Ghadi, and A. A. Ardalan, “Performance comparison of numerical inversion methods for Laplace and Hankel integral Transforms in engineering problems,” Applied Mathematics and Computation, vol. 250, pp. 759–775, 2015. Available at: https://doi.org/10.1016/j.amc.2014.10.102

Y. G. Anissimov and A. Watkinson, “Modelling skin penetration using the Laplace Transform technique,” Skin Pharmacology and Physiology, vol. 26, pp. 286–294, 2013. Available at: https://doi.org/10.1159/000351924

T. Wang, Y. Gu, and Z. Zhang, “An algorithm for the inversion of Laplace Transforms using Puiseux expansions,” Numerical Algorithms, vol. 78, no. 1, pp. 107–132, 2017. Available at: https://doi.org/10.1007/s11075-017-0369-y

J. Abate and P. P. Valkó, “Multi-precision Laplace Transform Inversion,” International Journal for Numerical Methods in Engineering, vol. 60, no. 5, pp. 979–993, 2004. Available at: https://doi.org/10.1002/nme.995

C. Pilatti, “Análise Comparativa do Desempenho Numérico de Técnicas de Inversão da Transformada de Laplace Aplicados a um Problema de Transporte de Soluto em Meio Poroso,” Master’s thesis, Programa de Pós-Graduação em Modelagem Computacional, Universidade Federal do Rio Grande, Rio Grande, Brasil, 2019. Available at: http://www.repositorio.furg.br/handle/1/9144

A. Talbot, “The accurate numerical inversion of Laplace Transforms,” IMA Journal of Applied Mathematics, vol. 23, no. 1, pp. 97–120, 1979. Available at: https://doi.org/10.1093/imamat/23.1.97

A. M. Cohen, “Numerical methods for Laplace Transform inversion,” Springer Science & Business Media, vol. 5, pp. 97–120, 2007.

C. Montella and J. P. Diard, “New approach of electrochemical systems dynamics in the time-domain under small-signal conditions. i. a family of algorithms based on numerical inversion of Laplace Transforms,” Journal of Electroanalytical Chemistry, vol. 623, no. 1, pp. 29–40, 2008. Available at: https://doi.org/10.1016/j.jelechem.2008.06.015

C. P. D. Costa, K. Rui, and L. D. Pérez-Fernández, “Different numerical inversion algorithms of the Laplace Transform for the solution of the advection-diffusion equation with non-local closure in air pollution modeling,” TEMA (São Carlos), vol. 19, no. 1, pp. 43–58, 2018. Available at: https://doi.org/10.5540/tema.2018.019.01.0043

K. L. Kuhlman, “Review of inverse Laplace Transform algorithms for Laplace-space numerical approaches,” Numerical Algorithms, vol. 63, no. 2, pp. 339–355, 2013. Available at: https://doi.org/10.1007/s11075-012-9625-3

J. A. Ferreira, G. R. L. Calixto, E. K. Freitas, B. D. A. Rodriguez, and J. F. P. Filho, “Aspectos computacionais da inversão numérica da Transformada de Laplace aplicada a um problema de transporte,” Revista Interdisciplinar de Pesquisa em Engenharia, vol. 6, no. 2, pp. 139–152, 2020. Available at: https://periodicos.unb.br/index.php/ripe/article/view/35142

M. A. G. Ruggiero and V. L. R. Lopes, Cálculo Numérico: aspectos teóricos e computacionais. São Paulo: Pearson Makron Books, 1996.

M. R. Spiegel, Laplace Transforms. New York, United States of America: New York: McGraw-Hill, 1965.

J. A. Ferreira, B. D. A. Rodriguez, and J. F. P. Filho, “Análise comparativa do desempenho numérico de técnicas de inversão da transformada de laplace aproximada por série de fourier,” Ciência e Natura, vol. 43, no. 1, pp. 1–26, 2021. Available at: https://periodicos.ufsm.br/cienciaenatura/article/view/66984

Downloads

Published

2022-07-15

How to Cite

Libardi Calixto, G. R., Freitas, E. K., Ferreira, J. A., Rodriguez, B. D. do A., & Prolo Filho, J. F. (2022). Parameter N Influence on the Fixed-Talbot Algorithm for the Laplace Transform Numerical Inversion. VETOR - Journal of Exact Sciences and Engineering, 32(1), 42–51. https://doi.org/10.14295/vetor.v32i1.13754

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 > >> 

You may also start an advanced similarity search for this article.