Gas Hydrate Technology: Computational Modeling for the Hydrate Growth Stage
DOI:
https://doi.org/10.14295/vetor.v31i1.13164Keywords:
Gas-hydrates, Computational-model, Hydrate formationAbstract
Within sustainable chemistry, gas hydrates are gaining prominence due to their innovative applications in different scientific and industrial contexts. The ability to understand and control its properties is crucial to the full development of hydrate-based technologies. In this context, based on the mathematical model published by Vlasov for methane hydrate formation, the present study seeks to develop a computational code capable of simulating the formation rate of different gas hydrates, under any thermodynamic conditions, exhibiting the advantage of reducing the number of experiments needed to evaluate its formation behavior. To assess the feasibility of simulating the formation of other gas hydrate compositions, the code was used to simulate the cyclopentane hydrate formation. The idealized computational model successfully performed the numerical reproduction of the experimental curves for the methane hydrate, presenting the biggest error of 19.73%. The results presented in this work are consistent with published works, providing means of observation of the initial experimental conditions influence until the final stage of formation. Furthermore, the computational code has a global nature, which allows the simulation of different gas hydrate compositions, with promising application in the development of hydrate-based technologies.
Downloads
References
J. Carroll. Natural gas hydrates: a guide for engineers, 2a ed., Amsterdam: Gulf Professional Publishing, 2009, pp. 165-197. Disponível em: https://www.elsevier.com/books/natural-gas-hydrates/carroll/978-0-7506-8490-3
E. D. Sloan Jr. e C. A. Koh. Clathrate hydrates of natural gases, 3a ed., CRC Press, 2007. Disponível em: https://doi.org/10.1201/9781420008494
B. A. Buffet. “Clathrate hydrates” em Annual Review of Earth and Planetary Sciences, vol. 28, no. 1, pp. 477-507, 2000. Disponível em: https://doi.org/10.1146/annurev.earth.28.1.477
S. Chu, Y. Cui e N. Liu. “The path towards sustainable energy”, Nature Materials, vol. 16, no. 1, pp. 16-22, 2017. Disponível em: https://doi.org/10.1038/nmat4834
Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, X. Li. “Review of natural gas hydrates as an energy resource: Prospects and challenges”, Applied Energy, vol. 162, pp. 1633–1652, 2016. Disponível em: doi:10.1016/j.apenergy.2014.12.061
L. D. D. Harvey e Z. Huang. “Evaluation of the potential impact of methane clathrate destabilization on future global warming”, Journal of Geophysical Research, vol. 100, no. D2, pp. 2905-2926, 1995. Disponível em: https://doi.org/10.1029/94JD02829
H. P. Veluswamy, R. Kumar e P Linga. “Hydrogen storage in clathrate hydrates: current state of the art and future directions”, Applied Energy, vol. 122, pp. 112-132, 2014. Disponível em: https://doi.org/10.1016/j.apenergy.2014.01.063
D. Zhong e P. Englezos. “Methane separation from coal mine methane gas by tetra-n-butyl ammonium bromide semiclathrate hydrate formation”, Energy & Fuels, vol. 26, no. 4, pp. 2098-2106, 2012. Disponível em: https://doi.org/10.1021/ef202007x
C.-G. Xu e X.-S. Li. “Research progress of hydrate-based CO2 separation and capture from gas mixtures”. RSC Advances, vol. 4, no. 35, pp. 18301-18316, 2014. Disponível em: https://doi.org/10.1039/C4RA00611A
K. C. Kang, P. Linga, K.-n. Park, S.-J. Choi e J. D. Lee. “Seawater desalination by gas hydrate process and removal characteristics of dissolved ions (Na+, K+, Mg2+, Ca2+, B3+, Cl−, SO42−)”, Desalination, vol. 353, pp. 84-90, 2014. Disponível em: https://doi.org/10.1016/j.desal.2014.09.007
A. Hassanpouryouzband, E. Joonaki, M. V. Farahani, S. Takeya, C. Ruppel, J. Yang, N. J. English, J. M. Schicks, K. Edlmann, H. Mehrabian, Z. M. Aman e B. Tohidia. “Gas hydrates in sustainable chemistry”, Chemical Society Reviews, vol. 49, no. 15, pp. 5225-5309, 2020. Disponível em: https://doi.org/10.1039/C8CS00989A
Z. Yin, M. Khurana, H. K. Tan e P. Linga. “A review of gas hydrate growth kinetic models”, Chemical Engineering Journal, vol. 342, pp. 9-29, 2018. Disponível em: https://doi.org/10.1016/j.cej.2018.01.120
V. A. Vlasov. “Phenomenological diffusion theory of formation of gas hydrate from ice powder”, Theoretical Foundations of Chemical Engineering, vol. 46, no. 6, pp. 576-582, 2012. Disponível em: https://doi.org/10.1134/S0040579512060243
V. A. Vlasov. “Diffusion model of gas hydrate formation from ice”, Heat and Mass Transfer, vol. 52, no. 3, pp. 531-537, 2016. Disponível em: https://doi.org/10.1007/s00231-015-1575-6
L. C. Barroso, M. M. A. Barroso, F. F. Campos Filho, M. L. B. de Carvalho e M. L. Maia. Cálculo Numérico. Harbra Ltd., São Paulo, 1987. Disponível em: https://www.amazon.com.br/Cálculo-Numérico-L-C-Barroso/dp/8529400895
I. R. Ferreira Filho, Y. T. de Barros, M. R. Barreira, C. H. Bucsky, K. C. da Silveira, A. J. Silva Neto. “Estudo Preliminar Teórico-Experimental do Processo Difusivo na Formação de Hidratos de Ciclopentano a partir de gelo em pó”, Revista Mundi Engenharia, Tecnologia e Gestão. Paranaguá, PR, vol. 4, no. 3, 2019. Disponível em: http://dx.doi.org/10.21575/25254782rmetg2019vol4n3844
C. H. Bucsky, Y. T. de Barros, K. C. da Silveira, A. J. Silva Neto. “Desenvolvimento de Aparato Experimental para a Formação de Hidratos de Ciclopentano” em Anais da 27a Semana de Iniciação Científica, UERJ, Rio de Janeiro, 2018, pp. 1450-1451. Disponível em: http://www.sr3.uerj.br/usm/cd/2018/semic.pdf
C. H. Bucsky, K. C. da Silveira, A. C. F. Moreira, A. J. Silva Neto. “Avaliação de resíduos sólidos têxteis como promotores de hidratos de ciclopentano” em Anais Congresso Brasileiro de Engenharia e Ciência dos Materiais de 2018 Ed. Foz do Iguaçu, Brasil, 2018. Disponível em: https://www.metallum.com.br/23cbecimat/anais/PDF/IVg24-002.pdf
I. R. Ferreira Filho, L. Knupp, Y. T. de Barros, K. C. da Silveira, A. J. Silva Neto. “Avaliação da influência do tecido em pó como promotor ecológico de hidratos de ciclopentano” em Anais da 28a Semana de Iniciação Científica, UERJ, Rio de Janeiro, 2019, pp. 1098. Disponível em: http://www.sr3.uerj.br/usm/cd/2019/semanadeiniciacao.pdf
W. F. Kuhs, D. K. Staykova e A. N. Salamatin. “Formation of methane hydrate from polydisperse ice powders”, The Journal of Physical Chemistry B, vol. 110, no. 26, pp. 13283-13295, 2006. Disponível em: https://doi.org/10.1021/jp061060f
“Planilha para Cálculo do Fator de Compressibilidade via Método Hall-Yarborough”, 2002. Disponível em: http://booksite.elsevier.com/9781933762418/content/Hall-Yarborough-Z.xls
D. K. Staykova, W. F. Kuhs, A. N. Salamantin, T. Hansen. “Formation of porous gas hydrates from ice powders: diffraction experiments and multistage model”, The Journal of Physical Chemistry B, vol. 107, no. 37, pp. 10299-10311, 2003. Disponível em: https://doi.org/10.1021/jp027787v
H. C. Kim, P. R. Bishnoi, R. A. Heidemann, S. S. H. Rizvi. “Kinetics of methane hydrate decomposition”, Chemical Engineering Science, vol. 42, no. 7, pp. 1645-1653, 1987. Disponível em: https://doi.org/10.1016/0009-2509(87)80169-0
V. A. Vlasov. “Formation and dissociation of gas hydrate in terms of chemical kinetics”, Reaction Kinetics, Mechanisms and Catalysis, vol. 110, no. 1, pp. 5-13, 2013. Disponível em: https://doi.org/10.1007/s11144-013-0578-x