Simulação de Ciclo Dinâmico em Fibras de Amarração Offshore: Modelos Matemáticos Modificados e Dependência de Invariantes da Mecânica do Contínuo

Autores

DOI:

https://doi.org/10.63595/vetor.v35i1.18256

Palavras-chave:

Multifilamentos sintéticos, Histerese mecânica, Ciclos de fadiga, Função energia de deformação, Modelos hiperelásticos

Resumo

Este artigo apresenta um estudo sobre a simulação de tensão-deformação de fibras de ancoragem offshore utilizando o modelo de Yeoh Modificado. Ele incorpora descrições matemáticas (linear, quadrática, cúbica e exponencial), além de examinar a dependência dos invariantes de deformação (I1 e I2), visando melhorar a precisão da descrição numérica do comportamento constitutivo das fibras. A metodologia de pesquisa inclui simulações computacionais validadas por dados experimentais, com foco na construção matemática baseada no modelo de Yeoh Modificado para representar o comportamento constitutivo na histerese mecânica (carregamento-descarregamento), abordando duas fibras: polietileno de alto módulo (HMPE) e poliéster (PET). Os resultados das simulações demonstram a capacidade dos modelos de descrever o comportamento tensão-deformação, mas fica claro que uma descrição apenas através de I2 não é suficiente para a convergência da simulação com os dados experimentais. Para os modelos matemáticos, o termo linear dependente de I1 (deformações principais) é o mais importante para o bom ajuste aos dados experimentais. O menor erro em relação às simulações é obtido para um modelo com uma descrição matemática completa e dependência de ambos os invariantes, apresentando um erro médio de 0,52% para o HMPE e 1,77% para o PET. Este trabalho fornece uma estrutura para simular e compreender as respostas mecânicas das fibras de ancoragem em histerese mecânica, destacando a relevância do modelo matemático e da dependência dos invariantes acoplados à simulação numérica.

Downloads

Não há dados estatísticos.

Referências

E. Hage Jr, “Aspectos históricos sobre o desenvolvimento da ciência e da tecnologia de polímeros,” Polímeros, vol. 8, no. 2, pp. 6–9, 1998. Available at: https://doi.org/10.1590/S0104-14281998000200003

W. D. Callister Jr, Ciência e engenharia de materiais: uma introdução, 7a ed. LTC, 2008. Rio de Janeiro, Brasil: Editora

C. J. M. Del Vecchio, “Light weight materials for deep water moorings,” Doctoral thesis, University of Reading, Reading, UK, 1992. Available at: https://go.exlibris.link/4jFtzQrc

L. F. Haach, D. T. Poitevin, and M. B. Bastos, “Prospects of synthetic fibers for deepwater mooring,” in Rio Oil & Gas Expo and Conference. Rio de Janeiro, Brazil: IBP, 2010.

H. A. McKenna, J. W. S. Hearle, and N. O’Hear, Handbook of fibre rope technology. Sawston, Cambridge, UK: Woodhead Publishing, 2004, vol. 34.

H. Liu, W. Huang, Y. Lian, and L. Li, “An experimental investigation on nonlinear behaviors of synthetic fiber ropes for deepwater moorings under cyclic loading,” Applied Ocean Research, vol. 45, pp. 22–32, 2014. Available at: https://doi.org/10.1016/j.apor.2013.12.003

C. Barrera, R. Guanche, and I. J. Losada, “Experimental modelling of mooring systems for floating marine energy concepts,” Marine Structures, vol. 63, pp. 153–180, 2019. Available at: https://doi.org/10.1016/j.marstruc.2018.08.003

D. M. da Cruz, A. Penaquioni, L. B. Zangalli, M. B. Bastos, I. N. Bastos, and A. L. N. da Silva, “Non-destructive testing of high-tenacity polyester sub-ropes for mooring systems,” Applied Ocean Research, vol. 134, p. 103513, 2023. Available at: https://doi.org/10.1016/j.apor.2023.103513

S. D. Weller, L. Johanning, P. Davies, and S. J. Banfield, “Synthetic mooring ropes for marine renewable energy applications,” Renewable Energy, vol. 83, pp. 1268–1278, 2015. Available at: https://doi.org/10.1016/j.renene.2015.03.058

M. B. Bastos, E. B. Fernandes, and A. L. N. da Silva, “Performance fibers for deep water offshore mooring ropes: Evaluation and analysis,” in OCEANS 2016 - Shanghai. Shanghai, China: IEEE, 2016, pp. 169–177. Available at: https://doi.org/10.1109/OCEANSAP.2016.7485612

P. Davies, Y. Reaud, L. Dussud, and P. Woerther, “Mechanical behaviour of HMPE and aramid fibre ropes for deep sea handling operations,” Ocean Engineering, vol. 38, no. 17–18, pp. 2208–2214, 2011. Available at: https://doi.org/10.1016/j.oceaneng.2011.10.010

D. M. da Cruz, M. A. Barreto, L. B. Zangalli, A. J. da Cruz Júnior, I. Melito, F. M. Clain, and C. E. M. Guilherme, “Mechanical characterization procedure of HMPE fiber for offshore mooring in deep waters,” Engineering Solid Mechanics, vol. 12, no. 3, pp. 311–322, 2024. Available at: https://doi.org/10.5267/j.esm.2024.1.003

M. P. Vlasblom and R. L. Bosman, “Predicting the creep lifetime of HMPE mooring rope applications,” in OCEANS 2006. Boston, MA, USA: IEEE, 2006, pp. 1–10. Available at: https://doi.org/10.1109/OCEANS.2006.307013

M. Vlasblom, J. Boesten, S. Leite, and P. Davies, “Development of HMPE fiber for permanent deepwater offshore mooring,” in Offshore Technology Conference, Houston, Texas, USA, 2012, pp. OTC–23 333–MS. Available at: https://doi.org/10.4043/23333-MS

R. Bosman, Q. Zhang, A. Leao, and C. Godreau, “First class certification on HMPE fiber ropes for permanent floating wind turbine mooring system,” in Offshore Technology Conference, Houston, Texas, USA, 2020, pp. OTC–30 475–MS. Available at: https://doi.org/10.4043/30475-MS

D. M. da Cruz, M. A. Barreto, L. B. Zangalli, T. L. Popiolek Júnior, and C. E. M. Guilherme, “Experimental study of creep behavior at high temperature in different HMPE fibers used for offshore mooring,” in Offshore Technology Conference Brasil, Rio de Janeiro, Brazil, 2023, pp. OTC–32 760–MS. Available at: https://doi.org/10.4043/32760-MS

E. L. V. Louzada, C. E. M. Guilherme, and F. T. Stumpf, “Evaluation of the fatigue response of polyester yarns after the application of abrupt tension loads,” Acta Polytechnica CTU Proceedings, vol. 7, pp. 76–78, 2016. Available at: https://doi.org/10.14311/APP.2017.7.0076

S. R. Ghoreishi, P. Davies, P. Cartraud, and T. Messager, “Analytical modeling of synthetic fiber ropes. part ii: A linear elastic model for 1 + 6 fibrous structures,” International Journal of Solids and Structures, vol. 44, no. 9, pp. 2943–2960, 2007. Available at: https://doi.org/10.1016/j.ijsolstr.2006.08.032

W. Huang, H. Liu, Y. Lian, and L. Li, “Modeling nonlinear creep and recovery behaviors of synthetic fiber ropes for deepwater moorings,” Applied Ocean Research, vol. 39, pp. 113–120, 2013. Available at: https://doi.org/10.1016/j.apor.2012.10.004

V. Sry, Y. Mizutani, G. Endo, Y. Suzuki, and A. Todoroki, “Consecutive impact loading and preloading effect on stiffness of woven synthetic-fiber rope,” Journal of Textile Science and Technology, vol. 3, no. 1, pp. 1–16, 2017. Available at: https://doi.org/10.4236/jtst.2017.31001

S. Xu, S. Wang, and C. G. Soares, “Experimental investigation on hybrid mooring systems for wave energy converters,” Renewable Energy, vol. 158, pp. 130–153, 2020. Available at: https://doi.org/10.1016/j.renene.2020.05.070

E. S. Belloni, F. M. Clain, and C. E. M. Guilherme, “Post-impact mechanical characterization of HMPE yarns,” Acta Polytechnica, vol. 61, no. 3, pp. 406–414, 2021. Available at: https://doi.org/10.14311/AP.2021.61.0406

D. M. da Cruz, F. M. Clain, and C. E. M. Guilherme, “Experimental study of the torsional effect for yarn break load test of polymeric multifilaments,” Acta Polytechnica, vol. 62, no. 5, pp. 538–548, 2022. Available at: https://doi.org/10.14311/AP.2022.62.0538

I. Melito, D. M. da Cruz, E. S. Belloni, F. M. Clain, and C. E. M. Guilherme, “The effects of mechanical degradation on the quasi static and dynamic stiffness of polyester yarns,” Engineering Solid Mechanics, vol. 11, no. 3, pp. 243–252, 2023. Available at: https://doi.org/10.5267/j.esm.2023.4.001

H. H. Pham, “Numerical modeling of a mooring line system for an offshore floating wind turbine in vietnamese sea conditions using nonlinear materials,” Water Science and Engineering, vol. 17, no. 3, pp. 300–308, 2024. Available at: https://doi.org/10.1016/j.wse.2023.10.004

I. Tsukrov, O. Eroshkin, W. Paul, and B. Celikkol, “Numerical modeling of nonlinear elastic components of mooring systems,” IEEE Journal of Oceanic Engineering, vol. 30, no. 1, pp. 37–46, 2005. Available at: https://doi.org/10.1109/JOE.2004.841396

C. Cifuentes, S. Kim, M. H. Kim, and W. S. Park, “Numerical simulation of the coupled dynamic response of a submerged floating tunnel with mooring lines in regular waves,” Ocean Systems Engineering, vol. 5, no. 2, pp. 109–123, 2015. Available at: https://doi.org/10.12989/ose.2015.5.2.109

N. Nguyen and K. Thiagarajan, “Nonlinear viscoelastic modeling of synthetic mooring lines,” Marine Structures, vol. 85, p. 103257, 2022. Available at: https://doi.org/10.1016/j.marstruc.2022.103257

M. Chen, C. B. Li, Z. Han, and J. bin Lee, “A simulation technique for monitoring the real-time stress responses of various mooring configurations for offshore floating wind turbines,” Ocean Engineering, vol. 278, p. 114366, 2023. Available at: https://doi.org/10.1016/j.oceaneng.2023.114366

F. T. Stumpf, C. E. M. Guilherme, D. M. da Cruz, A. H. M. F. T. da Silva, and M. B. Bastos, “A general constitutive model for the numerical simulation of different synthetic fibres used in offshore mooring,” Ships and Offshore Structures, vol. 18, no. 9, pp. 1338–1344, 2023. Available at: https://doi.org/10.1080/17445302.2022.2116766

D. M. da Cruz, C. E. M. Guilherme, F. T. Stumpf, and M. B. Bastos, “Numerical assessment of mechanical behavior of mooring lines using hybrid synthetic fiber-rope segments,” in Offshore Technology Conference, Houston, Texas, USA, 2022, pp. OTC–31 906–MS. Available at: https://doi.org/10.4043/31906-MS

F. T. Stumpf, M. A. Barreto, D. M. da Cruz, and C. E. M. Guilherme, “Numerical simulation of multi-material hybrid lines for offshore mooring,” Ocean Engineering, vol. 305, p. 117979, 2024. Available at: https://doi.org/10.1016/j.oceaneng.2024.117979

D. M. da Cruz, T. L. Popiolek Júnior, M. A. Barreto, C. E. M. Guilherme, and F. T. Stumpf, “Evaluation of energy models for numerical simulation of the mechanical behavior of polyester multifilaments,” The Journal of Engineering and Exact Sciences, vol. 9, no. 1, p. 15321–01e, 2023. Available at: https://doi.org/10.18540/jcecvl9iss1pp15321-01e

D. M. da Cruz, M. A. Barreto, L. B. Zangalli, F. T. Stumpf, J. M. Vassoler, and C. E. M. Guilherme, “Numerical simulation of the stress-strain behavior of polymeric fibers for mooring offshore structures,” in XLIV Ibero-Latin American Congress on Computational Methods in Engineering. Porto, Portugal: ABMEC, 2023. Available at: https://publicacoes.softaliza.com.br/cilamce2023/article/view/4900

D. M. da Cruz, T. L. Popiolek Júnior, M. A. Barreto, S. P. de Souza, L. B. Zangalli, A. J. da Cruz Júnior, T. C. Martins, A. L. N. da Silva, I. N. Bastos, and C. E. M. Guilherme, “Numerical simulation with hyperelastic constitutive model for high-performance multifilaments used in offshore mooring ropes,” The Journal of Engineering and Exact Sciences, vol. 10, no. 2, p. 17255, 2024. Available at: https://doi.org/10.18540/jcecvl10iss2pp17255

D. M. da Cruz, L. B. Zangalli, M. A. Barreto, I. N. Bastos, and A. L. N. da Silva, “Numerical simulation of the stress-strain behavior of polyester subropes for offshore mooring and relationship with change stiffness during the test protocol,” in ROG.e. Rio de Janeiro, Brazil: IBP, 2024. Available at: https://doi.org/10.48072/2525-7579.roge.2024.3215

American Society for Testing and Materials, D1577 Standard Test Methods for Linear Density of Textile Fibers, ASTM, West Conshohocken, Pennsylvania, USA, 2018. Available at: https://doi.org/10.1520/D1577-07R18

International Organization for Standardization, 2062 Textiles — Yarns from packages — Determination of single-end breaking force and elongation at break using constant rate of extension (CRE) tester, ISO, Geneva, Switzerland, 2009. Available at: https://www.iso.org/standard/45642.html

J. C. Simo and T. J. R. Hughes, Computational Inelasticity. New York, USA: Springer-Verlag, 1997.

P. J. Flory, “Thermodynamic relations for high elastic materials,” Transactions of the Faraday Society, vol. 57, pp. 829–838, 1961. Available at: https://doi.org/10.1039/TF9615700829

G. A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science. Chichester, UK: John Wiley & Sons, 2000.

O. H. Yeoh, “Some forms of the strain energy function for rubber,” Rubber Chemistry and Technology, vol. 66, no. 5, pp. 754–771, 1993. Available at: https://doi.org/10.5254/1.3538343

R. S. Rivlin, “Large elastic deformations of isotropic materials iv. further developments of the general theory,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 241, no. 835, pp. 379–397, 1948. Available at: https://doi.org/10.1098/rsta.1948.0024

O. H. Yeoh, “Characterization of elastic properties of carbon-black-filled rubber vulcanizates,” Rubber Chemistry and Technology, vol. 63, no. 5, pp. 792–805, 1990. Available at: https://doi.org/10.5254/1.3538343

M. Mooney, “A theory of large elastic deformation,” Journal of Applied Physics, vol. 11, no. 9, pp. 582–592, 1940. Available at: https://doi.org/10.1063/1.1712836

R. S. Rivlin and D. W. Saunders, “Large elastic deformations of isotropic materials vii. experiments on the deformation of rubber,” Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 243, no. 865, pp. 251–288, 1951. Available at: https://doi.org/10.1098/rsta.1951.0004

International Organization for Standardization, 18692-3 Fibre ropes for offshore stationkeeping — Part 3: High modulus polyethylene (HMPE), ISO, Geneva, Switzerland, 2020. Available at: https://www.iso.org/standard/77487.html

——, 18692-2 Fibre ropes for offshore stationkeeping — Part 2: Polyester, ISO, Geneva, Switzerland, 2019. Available at: https://www.iso.org/standard/70290.html

D. M. da Cruz, L. B. Zangalli, M. A. Barreto, A. L. N. da Silva, and I. N. Bastos, “Numerical simulation of creep behavior in low creep HMPE fibers used for offshore mooring ropes,” in Offshore Technology Conference Brasil, Rio de Janeiro, Brazil, 2025, pp. OTC–36 033–MS. Available at: https://doi.org/10.4043/36033-MS

B. Wen, J. Zhang, Q. Li, Z. Zhang, and H. Ding, “A novel visco-elastic–plastic constitutive model for predicting the cyclic loading–unloading nonlinear tensile behaviors of off-axis twisted flax fiber reinforced composites,” Composites Part A: Applied Science and Manufacturing, vol. 190, no. 6, p. 108679, 2025. Available at: https://doi.org/10.1016/j.compositesa.2024.108679

Q. Gao, G. Ji, M. Sun, Y. Xiao, H. Rao, and Z. Sun, “Dynamic hysteresis compensation for tendon-sheath mechanism in flexible surgical robots without distal perception,” IEEE Transactions on Robotics, vol. 41, pp. 3703–3721, 2025. Available at: https://doi.org/10.1109/TRO.2025.3577011

L. Shi, Q. Wang, L. Shen, L. Pang, J. Huang, and Z. Ren, “Influence of self-contact friction on the hysteresis mechanical behavior of entangled metal pseudo rubber,” Tribology International, vol. 209, p. 110765, 2025. Available at: https://doi.org/10.1016/j.triboint.2025.110765

F. Khalid, P. Davies, P. Halswell, N. Lacotte, P. R. Thies, and L. Johanning, “Evaluating mooring line test procedures through the application of a round robin test approach,” Journal of Marine Science and Engineering, vol. 8, no. 6, p. 436, 2020. Available at: https://doi.org/10.3390/jmse8060436

Y. Lian, Y. Zhang, Y. Xie, J. Zheng, W. Chen, S.-C. Chen, J. Zhang, M.-A. Xue, and S. C. Yim, “Effects of bedding-in loading history on mechanical behaviors of aramid HMPE and polyester mooring ropes,” Ocean Engineering, vol. 321, p. 120413, 2025. Available at: https://doi.org/10.1016/j.oceaneng.2025.120413

L. Zhang, Z. Li, Q. Fu, N. Tang, S. Pan, M. Lin, B. Wang, P. Bai, D. Qiao, B. Zhang, and F. Huang, “High-precision numerical simulation method for thermal–mechanical coupling in rubbers,” Polymer Engineering & Science, vol. 65, no. 1, pp. 120–134, 2025. Available at: https://doi.org/10.1002/pen.26996

M. Bahreman, H. Darijani, and M. Fooladi, “Constitutive modeling of isotropic hyperelastic materials using proposed phenomenological models in terms of strain invariants,” Polymer Engineering & Science, vol. 56, no. 3, pp. 299–308, 2016. Available at: https://doi.org/10.1002/pen.24255

F. T. Stumpf and R. J. Marczak, “Constitutive framework of a new hyperelastic model for isotropic rubber-like materials for finite element implementation,” Latin American Journal of Solids and Structures, vol. 18, no. 2, p. e346, 2021. Available at: https://doi.org/10.1590/1679-78256349

N. H. Shah and S. F. Ali, “A hyperelastic strain energy function for isotropic rubberlike materials,” International Journal of Mechanical Sciences, vol. 279, p. 109472, 2024. Available at: https://doi.org/10.1016/j.ijmecsci.2024.109472

L. Hoss, “Modelos constitutivos hiperelásticos para elastômeros incompressíveis: ajuste, comparação de desempenho e proposta de um novo modelo [in portuguese],” Master’s thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2009. Available at: http://hdl.handle.net/10183/16310

M. Kachanov and I. Sevostianov, Micromechanics of Materials, with Applications, ser. Solid Mechanics and Its Applications. Cham, Switzerland: Springer, 2018. Available at: https://doi.org/10.1007/978-3-319-76204-3

V. A. Buryachenko, Local and Nonlocal Micromechanics of Heterogeneous Materials. Cham, Switzerland: Springer, 2022. Available at: https://doi.org/10.1007/978-3-030-81784-8

H. Thuilliez, P. Davies, P. Cartraud, M. Feuvrie, and T. Soulard, “Characterization and modelling of the dynamic stiffness of nylon mooring rope for floating wind turbines,” Ocean Engineering, vol. 287, p. 115866, 2023. Available at: https://doi.org/10.1016/j.oceaneng.2023.115866

Downloads

Publicado

2025-08-01

Como Citar

da Cruz, D. M., Bastos, I. N., da Silva, A. L. N., Vassoler, J. M., Stumpf, F. T., Cruz Júnior, A. J. da, … Guilherme, C. E. M. (2025). Simulação de Ciclo Dinâmico em Fibras de Amarração Offshore: Modelos Matemáticos Modificados e Dependência de Invariantes da Mecânica do Contínuo. VETOR - Revista De Ciências Exatas E Engenharias, 35(1), e18256. https://doi.org/10.63595/vetor.v35i1.18256

Edição

Seção

Seção Especial XXVII ENMC/XV ECTM