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Abstract

Epidemiological modeling that incorporates interprovincial mobility and time-varying contact rates is essential for
elucidating the transmission dynamics of COVID-19. The migration of individuals between provinces and temporal
fluctuations in contact rates shaped by social distancing directives are thought to be the pivotal factors influencing the
spread of the disease. To investigate these variables, we constructed a stochastic metapopulationmodel consisting of
11 subpopulations, each delineated by a compartmental SEIAHRD submodel, to articulate COVID-19 transmission
within the context of Mozambique. Inter-provincial mobility was quantified utilizing an origin-destination matrix
derived from the radiation model. The interplay between human mobility and variability in contact rates was eval-
uated while testing three distinct scenarios: model without mobility; model with mobility and model with mobility
and isolation of Maputo City. The model incorporating time-dependent contact rates demonstrated superior per-
formance across all model scenarios. These results emphasize the significance of inter-regional mobility in shaping
epidemic dynamics and underscore the effect of governmental interventions on fluctuations in contact rates. This
investigation underscores the necessity for strategic mobility restrictions and adaptive measures in forthcoming epi-
demic control frameworks to enhance response efficacy and mitigate health and social repercussions.
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Resumo

A modelação epidemiológica que incorpora mobilidade interprovincial e taxas de contacto variáveis no tempo é
essencial para esclarecer a dinâmica de transmissão da COVID-19. A migração de indivíduos entre províncias e
as flutuações temporais nas taxas de contacto moldadas por diretrizes de distanciamento social são consideradas
factores essenciais que influenciam a disseminação da doença. Para investigar essas variáveis, construímos um
modelo metapopulacional estocástico consistindo em 11 subpopulações, cada uma representada por um submodelo

⭐This article is an extended version of the work presented at the Joint XXVII ENMC National Meeting on Computational Modeling, XV
ECTMMeeting on Science and Technology of Materials,held in Ilhéus–Brazil,from October 1st to 4th,2024.
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SEIAHRD compartimental, para investigar a transmissão da COVID-19 dentro do contexto de Moçambique. A mo-
bilidade interprovincial foi quantificada utilizando uma matriz de origem-destino derivada do modelo de radiação.
A interação entre mobilidade humana e variabilidade nas taxas de contacto foi avaliada testando três cenários distin-
tos: modelo semmobilidade; modelo commobilidade e modelo commobilidade e isolamento da Cidade deMaputo.
Omodelo que incorpora taxas de contacto dependentes do tempo demonstrou um desempenho superior em todos os
cenários em relação ao modelo com taxa de contacto constante. Esses resultados enfatizam a importância da mobil-
idade inter-regional na formação da dinâmica epidêmica e ressaltam o efeito das intervenções governamentais nas
flutuações nas taxas de contacto. Esta investigação ressalta a necessidade de restrições estratégicas de mobil idade e
medidas adaptativas nos futuros programas de controle de epidemias para aumentar a eficácia da resposta e mitigar
as repercussões sociais e de saúde pública.

Palavras-chave
Pandemia de COVID-19 ∙ Mobilidade interprovincial ∙ Modelo metapopulacional estocástico ∙ Modelo de
radiação ∙ Taxas de contacto dependentes do tempo

1 Introduction
Since the start of the COVID-19 pandemic, the role of humanmobility has been recognized extensively, establishing
a correlation between reductions in mobility and the spread of the virus [1, 2, 3, 4, 5, 6]. Inter-regional mobility, de-
fined as the relocation of individuals among different territories, significantly impacted the velocity and magnitude
of viral transmission. Regions exhibiting high connectivity, characterized by a dense flow of individuals, witnessed
a more rapid propagation of the virus, particularly during critical junctures of the pandemic [7, 8]. Grasping these
mobility patterns was vital for forecasting outbreaks in various locales and for enacting targeted measures, includ-
ing regional lockdowns and temporary travel prohibitions, aimed at alleviating the pandemic’s repercussions and
easing the strain on healthcare infrastructures [9, 2]. A general conclusion from these studies is that human mo-
bility between regions contributes significantly to the initial transmission and spread of virus [10]. Since, reduction
in mobility as a consequence of restrictive measures is shown to correlate with a reduction of new infections, it is
important the to assess the long term effect of such social distancing measures in shaping the pattern of contact
rates during an epidemic. Indeed, the relationship between contacts and mobility is expected to be time-varying
[11]. During the pandemic, these rates exhibited considerable variability, shaped by social distancing directives and
lockdowns, which temporarily curtailed interpersonal interactions and contributed to flattening the contagion curve
[11]. Nevertheless, festive occasions and celebratory events precipitated elevated contact rates, frequently culminat-
ing in surges of cases [12]. By accounting for inter-provincial mobility and time-dependent contact rates, models
can yield critical insights for policymakers, aiding in the formulation of more efficacious and timely containment
strategies and optimizing resource distribution to manage the virus’s transmission in a regionally nuanced manner
[13].

One of the mathematical tools used to simultaneously integrate inter-regional mobility and disease transmission
is the metapopulation modelling framework. Essentially, metapopulation models allows for the incorporation of
spatial heterogeneity within a territory and themovement of individuals between subpopulations, providing a robust
framework for analyzing how these dynamics impact disease transmission [14, 15]. Although it has long been known
that human mobility is crucial for the predicting the epidemic and that mobility may also affect contact rates which
in turn affect disease transmission [16], very few studies have assessed the composition effect of mobility and contact
rates variability shaped by social distancing directives.

In the present work, we wish to expand our ealier study (presented at the Encontro Nacional de Modelagem
Computacional, Ilheus 2024) to account for variations in social interactions across distinct temporal frames, such as
weekdays versus weekends, holiday periods, and intervals of stringent restrictions. Since we have examined already
the role of humanmobility in the context of constant transmission rates, here our emphasis is on how infection rates
variability, shaped by social distancing directives and lockdowns impacted the evolution of the pandemic in the con-
text of human mobility. Our goal is to compare and contrast findings of an implementation with constant contact
rates with one considering time-dependent infection rates. Following the same approach as in our previous work we
attempt to understand and reproduce the spatial patern of COVID-19 pandemic in settings where data on people’s
movements is not readily available by implementing a metapopulation model with travel rates determined based on
a radiation model. Such model is based on the assumption that population density dictates employment opportuni-
ties, hence, the predicted flux depends on the origin and destination populations and on the population of the region
surrounding the origin location. We use the radiation model to simulate and generate the Origin-Destination ma-
trix that captures resource disparities between provinces and their varying capacity in responding to the epidemics
(for further discussion see [17, 1] and references therein). Since our goal is to examine the interplay between hu-
man mobility and the impact of social distancing directives and nation-wide lockdowns on the transmission rates
over time we test the same model scenarios as in our previous work: scenario 1 model without mobility, scenario 2
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model with mobility and scenario 3 model with mobility and isolation of Maputo City. We calibrate the model using
cumulative case data from Mozambique [18] focusing on the period from the begining of the epidemic (March 22,
2020) to the end of the first wave (August 31, 2020). During calibration, we estimate four critical parameters for each
province: the initial transmission rate (𝛽0𝑖 ), the incidence control parameter (𝜉𝑖), the initial number of infectious in-
dividuals (𝐼0𝑖 ) and the intensity of the public interventions (𝜎𝑖). The later is implemented to account for population
size variability in each location due to mobility.

For each scenario we compare the performance of the two models: model with constant contact rates and model
with time-dependent contact rates. Our analysis shows that the model which integrates time-dependent contact
rates generally surpasses the constant-rate model in performance, as demonstrated by consistently reduced RMSE
values, especially in scenarios that incorporate interprovincial mobility. This observation suggests that temporal
variations in contact rates, presumably influenced by interventionmeasures such as social distancing andmovement
restrictions, significantly contribute to the accurate representation of the transmission dynamics associated with
COVID-19 inMozambique. However, in the absence of mobility factors, the disparities in RMSE values between the
two models are minimal, indicating that fluctuations in contact rates alone are inadequate to elucidate the observed
data. This conclusion emphasizes the paramount significance of incorporating both time-dependent contact rates
and mobility dynamics to attain a more precise depiction of disease transmission.

2 Material andMethods

2.1 Epidemic model for each subpopulation
To describe the transmission dynamics of COVID-19 in each province or subpopulation 𝑖, we implemented a stochas-
tic and discrete compartmental epidemiological submodel SEIAHRD. Each compartment represents a state of in-
dividuals during the infection: S for susceptible, E for exposed, I for symptomatic infectious, A for asymptomatic
infectious,H for hospitalized, R for recovered, and D for deceased. In each subpopulation 𝑖, the numberof individ-
uals in each compartment at time 𝑡 is indicated by 𝑆𝑖(𝑡), 𝐸𝑖(𝑡), 𝐼𝑖(𝑡), 𝐴𝑖(𝑡),𝐻𝑖(𝑡), 𝑅𝑖(𝑡), and 𝐷𝑖(𝑡).

We assume no loss of immunity and no reinfection of recovered individuals. In a subpopulation 𝑖, the model
initialization occurs at 𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌𝑖 (𝑡 = 𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌𝑖). Each simulation step lasts one day (ℎ = 1). The number
of individuals in each compartment each day depends on the previous day and the flows between compartments.
Let 𝐵𝑘𝑙(𝑡) be the number of transitions between compartments, with 𝑘 as the origin and 𝑙 as the destination. We use
numerical labels: 𝑆 = 1, 𝐸 = 2, 𝐼 = 3, 𝐴 = 4, 𝐻 = 5, 𝑅 = 6, 𝐷 = 7, described as follows: 𝐵12(𝑡): new exposures
after contact with infectious individuals; 𝐵23(𝑡): new symptomatic cases; 𝐵24(𝑡): new asymptomatic cases; 𝐵35(𝑡):
new hospitalizations; 𝐵36(𝑡): recoveries after symptomatic infection; 𝐵46(𝑡): recoveries after asymptomatic infection;
𝐵56(𝑡) recoveries after hospitalization; 𝐵57(𝑡): new deaths; corresponding to the schematic description shown in
Fig. 1.

The transition between compartments is a stochastic process, modeled by a binomial distribution with a 𝑠𝑒𝑒𝑑 =
11012024 and where the number of trials equals the number of individuals in the current compartment. In each
subpopulation we considered a non constant transmission rate, given by

𝛽𝑖(𝑡) = {
𝛽0𝑖 , if 0 ≤ 𝑡 ≤ 𝑡𝑒𝑓𝑓
𝛽0𝑖 𝑒𝑥𝑝

(
−𝜎𝑖

(
𝑡 − 𝑡𝑒𝑓𝑓

))
, if 𝑡𝑒𝑓𝑓 < 𝑡

(1)

where 𝛽0𝑖 is the initial infection rate, 𝑡𝑒𝑓𝑓 corresponds to the day when the public measures take effect and 𝜎𝑖 is the
rate at which they take effect [19].

It is assumed that transmission occurs through close contact between susceptible and infectious individuals, with
a probability 𝜆𝑖(𝑡), called the force of infection, given by

𝜆𝑖(𝑡) = 1 − [1 − 𝛽𝑖(𝜉 + (1 − 𝜉)∕𝑁𝑖)]𝑁
+
𝑖 , (2)

where 𝛽𝑖 is the infection rate, 𝑁𝑖 is the total number of individuals in subpopulation 𝑖, 𝑁+
𝑖 = 𝐼𝑖(𝑡) + 𝐴𝑖(𝑡) + 𝐻𝑖(𝑡),

and 𝜉 controls the incidence: 𝜉 = 0 for standard and 𝜉 = 1 for density-dependent incidence [20].
Our model is along the lines of [21], and the stochastic compartmental model in discrete time for COVID-19
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assumes the following form

𝑆𝑖(𝑡 + ℎ) = 𝑆𝑖(𝑡) − 𝐵12(𝑡)
𝐸𝑖(𝑡 + ℎ) = 𝐸𝑖(𝑡) + 𝐵12(𝑡) − 𝐵23(𝑡) − 𝐵24(𝑡)
𝐼𝑖(𝑡 + ℎ) = 𝐼𝑖(𝑡) + 𝐵23(𝑡) − 𝐵35(𝑡) − 𝐵36(𝑡)
𝐴𝑖(𝑡 + ℎ) = 𝐴𝑖(𝑡) + 𝐵24(𝑡) − 𝐵46(𝑡) (3)
𝐻𝑖(𝑡 + ℎ) = 𝐻𝑖(𝑡) + 𝐵35(𝑡) − 𝐵56(𝑡) − 𝐵57(𝑡)
𝑅𝑖(𝑡 + ℎ) = 𝑅𝑖(𝑡) + 𝐵36(𝑡) + 𝐵46(𝑡) + 𝐵56(𝑡)
𝐷𝑖(𝑡 + ℎ) = 𝐷𝑖(𝑡) + 𝐵57(𝑡),

where

𝐵12(𝑡) ∼ Bin(𝑆𝑖(𝑡), 𝑃12(𝑡)), 𝐵23(𝑡) ∼ Bin(𝐸𝑖(𝑡), 𝑃23), 𝐵24(𝑡) ∼ Bin(𝐸𝑖(𝑡), 𝑃24), 𝐵35(𝑡) ∼ Bin(𝐼𝑖(𝑡), 𝑃35),
𝐵36(𝑡) ∼ Bin(𝐼𝑖(𝑡), 𝑃36), 𝐵46(𝑡) ∼ Bin(𝐴𝑖(𝑡), 𝑃46), 𝐵56(𝑡) ∼ Bin(𝐻𝑖(𝑡), 𝑃56), 𝐵57(𝑡) ∼ Bin(𝐻𝑖(𝑡), 𝑃57).

The random variables above involve binomial distributions B(𝑛, 𝑝) with the following probabilities: 𝑃12(𝑡) =
𝜆𝑖(𝑡),where 𝜆𝑖(𝑡) is the force of infection; 𝑃23 = 𝛼(1−𝜌),where 𝛼 is the incubation rate and (1−𝜌) is the proportion
of symptomatic infectious individuals; 𝑃24 = 𝛼𝜌, where 𝜌 is the proportion of asymptomatic infectious individuals;
𝑃35 = 𝛾1𝜇, where 𝛾1 is the rate at which symptomatic individuals become recovered and 𝜇 is the proportion of
hospitalized individuals; 𝑃36 = 𝛾1(1 − 𝜇); 𝑃46 = 𝛾2, where 𝛾2 is the rate at which asymptomatic individuals become
recovered; 𝑃56 = 𝛾3(1 − 𝜔), where 𝛾3 is the rate at which hospitalized individuals become recovered and 1 − 𝜔 is
the proportion of individuals recovered after hospitalization; 𝑃57 = 𝛾3𝜔, where 𝜔 is the proportion of individuals
declared deceased after hospitalization.
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Figure 1: Transfer diagram of the SEIAHRD epidemic model in each node.

2.2 Data and humanmobility estimation
Nation-wide COVID-19 lockdown restrictions in Mozambique were implemented since the notification of the first
COVID-19 case on 22 March 2020. However, mobility between regions such as provinces was never restricted. The
main goal of this sudy is to use a metapopulation modelling framework for studying and understanding the effect
of human mobility on the spread of COVID-19 between provinces while accounting for contact rates variability,
shaped by social distancing directives and lockdowns. In recent days mobility flows between regions are commonly
estimated frommobile-phone records. However, such daily mobility data provided by mobile phones are not readily
and publicly available in low-income countries such as Mozambique. In this case, in order to quantify mobility
between provinces we use alternative models to determine the daily populattion flows.
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Figure 2: Synthetic interprovincialmobility network, where 0 represents Niassa Province, 1 represents CaboDelgado
Province, 2 represents Nampula Province, 3 represents Zambézia Province, 4 represents Tete Province, 5 represents
Manica Province, 6 represents Sofala Province, 7 represents Inhambane Province, 8 represents Gaza Province, 9
represents Maputo Province, and finally 10 represents the Maputo City.

One of the most commonly used models is the gravity model, which is based on empirical evidence that the
commuting between two places is proportional to the product of the populations and inversely proportional to the
distance between them [22]. However, the gravitymodel has limitations, such as the lack of a rigorous derivation, the
use of various distance functions, and the need for previous traffic data to fit the parameters [23]. These limitations
can be overcomedby the radiationmodel, which reproduces commutingmovementswithout the need for parameters
or fitting to existing data, making it ideal for generating a synthetic commuting network in the absence of empirical
data [24]. Themodel is based on a stochastic decision process, determining the daily commuting fluxes of individuals
between the eleven provinces of Mozambique.

Therefore, to compute the origin-destination matrix for interprovincial connections compatible with empirical
data collected through the interprovincial road transport system network, we used the radiation model based on
population data from the Instituto Nacional de Estatistica. To simulate mobility between provinces, we built a syn-
thetic network, composed of𝑉 nodes and𝑀 connections, where the nodes represent the center of eachMozambican
province and the connections symbolize the movement of individuals between them, as illustrated in Fig. 2.

The mobility is regulated by the parameter 𝜏, known as the mobility coefficient, and the weights 𝑇𝑖𝑗 of connec-
tions between subpopulations [25]. Thus, each weight 𝑇𝑖𝑗 corresponds to an entry in the OD matrix, generated by
simulating the radiation model implemented in the Python library Sciki-mobility, as developed by [26]. Proposed by
[23], the radiation model is expressed as

⟨𝑇𝑖𝑗⟩ = 𝑇𝑖
𝑁𝑖𝑁𝑗

(𝑁𝑖 + 𝐾𝑖𝑗)(𝑁𝑖 +𝑁𝑗 + 𝐾𝑖𝑗)
, (4)

where 𝑁𝑖 is the population in the originating province 𝑖, 𝑁𝑗 is the population in the destination province 𝑗, 𝐾𝑖𝑗 is
the total population within the circle of radius centered at 𝑖 excluding 𝑖 and 𝑗, and

∑
𝑗≠𝑖 𝑇𝑖𝑗 ≡ 𝑇𝑖 represents the total

travelers originating from 𝑖, proportional to the local population.
According to [24], theODmatrix resulting from the simulation represents the estimated daily displacement flows

across the entire country. The resulting OD matrix from our simulation is presented in Table 1 below.
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Table 1: Values of daily flows across the entire country.

DESTINATION

0 1 2 3 4 5 6 7 8 9 10

ORIGIN

0 0 986 119 74 24 13 17 16 12 46 23
1 396 0 1547 509 172 68 145 85 62 267 229
2 111 1513 0 399 66 32 77 45 39 139 113
3 196 214 1476 0 150 127 401 56 58 235 180
4 61 73 89 310 0 626 434 30 21 81 43
5 2 0 1 45 196 0 624 67 15 62 21
6 16 1 54 515 66 646 0 97 42 111 55
7 0 3 1 3 2 0 2 0 868 710 115
8 0 2 3 1 0 2 1 897 0 779 129
9 76 184 172 223 117 82 122 128 148 0 12447
10 838 2275 1797 2471 1307 985 1400 1753 2006 21166 0

Movements between subpopulations are random processes and connections between provinces depend on the
mobility flow of susceptible S, exposed E, infectious hosts,A and I, and recovered,R. Furthermore, since there were
nomobility restrictions between provinces at the time, we assume that themovement of exposed, and infectious and
recovered individuals is the same as the movement of susceptible individuals. Using multinomial sampling across
the permitted compartments (S, E, I, A, R), with the number of trials being determined by the individuals available
in each compartment and the probability

𝑝𝑖𝑗 =
𝜏
∑

𝑗 𝑇𝑖𝑗
𝑁𝑖(0)

, (5)

where 𝜏 is the mobility coefficient, 𝜏𝑇𝑖𝑗 represents the expected number of travelers from 𝑖 to 𝑗, and 𝑁𝑖(0) is the
initial number of individuals in subpopulation 𝑖.

Only individuals from compartment S can travel to another province 𝑗 ≠ 𝑖 before 𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌𝑗 . For each
compartment 𝑋 ({S, E, I, A, R}) in subpopulation 𝑖 and time 𝑡, after determining 𝑋𝑖𝑗(𝑡), the number of individuals
traveling from 𝑖 to 𝑗,

∑
𝑗 𝑋𝑖𝑗(𝑡) represents the total number of individuals in compartment 𝑋 leaving subpopulation

𝑖 for other subpopulations 𝑗. On the other hand,
∑

𝑗 𝑋𝑗𝑖 indicates the total number of individuals entering 𝑖 from
different subpopulations 𝑗. In each compartment 𝑋, an individual has the possibility to move from subpopulation 𝑖
to one of 𝐽 = 10 other subpopulations. Thus, this process can be expressed as a multinomial distribution:

(𝑋𝑖1(𝑡), … , 𝑋𝑖𝐽(𝑡)) ∼ Multinomial (𝑋𝑖(𝑡), 𝐽, 𝑝𝑖1, … , 𝑝𝑖𝐽) (6)

where (𝑝𝑖1, … , 𝑝𝑖𝐽) are given by each row of the transition matrix ilustrated in Fig. 3.
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0.0 0.741 0.089 0.056 0.018 0.01 0.013 0.012 0.009 0.035 0.017

0.114 0.0 0.445 0.146 0.049 0.02 0.042 0.024 0.018 0.077 0.066

0.044 0.597 0.0 0.157 0.026 0.013 0.03 0.018 0.015 0.055 0.045

0.063 0.069 0.477 0.0 0.048 0.041 0.13 0.018 0.019 0.076 0.058

0.035 0.041 0.05 0.175 0.0 0.354 0.245 0.017 0.012 0.046 0.024

0.002 0.0 0.001 0.044 0.19 0.0 0.604 0.065 0.015 0.06 0.02

0.01 0.001 0.034 0.321 0.041 0.403 0.0 0.061 0.026 0.069 0.034

0.0 0.001 0.001 0.002 0.001 0.0 0.001 0.0 0.51 0.417 0.068

0.0 0.002 0.002 0.001 0.0 0.001 0.001 0.494 0.0 0.429 0.071

0.006 0.013 0.013 0.016 0.009 0.006 0.009 0.009 0.011 0.0 0.908

0.023 0.063 0.05 0.069 0.036 0.027 0.039 0.049 0.056 0.588 0.0

Figure 3: The probability matrix (𝑝) computed using the Eq. (5), with 𝜏 = 1. 𝑝𝑖𝑗 is the probability that an individual
who came from one of the 11 regions to region 𝑗, originated from region 𝑖.

2.3 Metapopulation model
Using notation defined in the previous section, we extendmodel (3) by incorporating interprovincial mobility terms,
leading to the following metapopulation model for COVID-19 transmission, described by system (7),

𝑆𝑖(𝑡 + ℎ) = 𝑆𝑖(𝑡) − 𝐵12(𝑡) −
∑

𝑗
𝑆𝑖𝑗(𝑡) +

∑

𝑗
𝑆𝑗𝑖(𝑡)

𝐸𝑖(𝑡 + ℎ) = 𝐸𝑖(𝑡) + 𝐵12(𝑡) − 𝐵23(𝑡) − 𝐵24(𝑡) −
∑

𝑗
𝐸𝑖𝑗(𝑡) +

∑

𝑗
𝐸𝑗𝑖(𝑡)

𝐼𝑖(𝑡 + ℎ) = 𝐼𝑖(𝑡) + 𝐵23(𝑡) − 𝐵35(𝑡) − 𝐵36(𝑡) −
∑

𝑗
𝐼𝑖𝑗(𝑡) +

∑

𝑗
𝐼𝑗𝑖(𝑡)

𝐴𝑖(𝑡 + ℎ) = 𝐴𝑖(𝑡) + 𝐵24(𝑡) − 𝐵46(𝑡) −
∑

𝑗
𝐴𝑖𝑗(𝑡) +

∑

𝑗
𝐴𝑗𝑖(𝑡) (7)

𝐻𝑖(𝑡 + ℎ) = 𝐻𝑖(𝑡) + 𝐵35(𝑡) − 𝐵56(𝑡) − 𝐵57(𝑡)
𝑅𝑖(𝑡 + ℎ) = 𝑅𝑖(𝑡) + 𝐵36(𝑡) + 𝐵46(𝑡) + 𝐵56(𝑡) −

∑

𝑗
𝑅𝑖𝑗(𝑡) +

∑

𝑗
𝑅𝑗𝑖(𝑡)

𝐷𝑖(𝑡 + ℎ) = 𝐷𝑖(𝑡) + 𝐵57(𝑡)

Though, starting frommodel (7), we can revert tomodel (3) simply by setting 𝜏 = 0 in Eq. (5), thereby eliminating
all terms representing interprovincial mobility.

Based on the description so far, the simulation process of our computational model is as the following: in each
simulation step, transmission rules are applied in each province, followed by updating the number of individuals
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in each state. Subsequently, mobility rules are implemented to determine how many individuals travel through
each connection. After calculating all flows, the number of individuals in each state across all provinces is updated.
According to [25], the results are independent of the order in which visits to subpopulations aremade for performing
calculations.

2.4 Model calibration

Table 2: Non and calibrated parameter values by province.

Parameter Definition Value Source Province

𝛼 Incubation rate of Exposed individuals 1∕5.1 𝑑𝑎𝑦𝑠−1 [27]

All

𝜌 Proportion of Asymptomatic individuals 0.05 [28]
𝛾1 Recovery rate of Symptomatic Infectious individuals 1∕10 𝑑𝑎𝑦𝑠−1 [17]
𝛾2 Recovery rate of Asymptomatic Infectious individuals 1∕9.5 𝑑𝑎𝑦𝑠−1 [29]
𝛾3 Recovery rate of Hospitalized infectious individuals 1∕18.1 𝑑𝑎𝑦𝑠−1 [29]
𝜇 Proportion of Hospitalized Infectious individuals 0.05 [17]
𝜔 Proportion of declared Deaths 0.2 [17]
𝜏 Mobility coefficient [0, 1] [25]
𝑡𝑒𝑓𝑓 First day of the public interventions 26 [18]
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌0 Notification date of the 1𝑠𝑡 case 67 (28/05/20) [18] Niassa
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌1 Notification date of the 1𝑠𝑡 case 17 (08/04/20) [18] Cabo Delgado
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌2 Notification date of the 1𝑠𝑡 case 63 (24/05/20) [18] Nampula
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌3 Notification date of the 1𝑠𝑡 case 64 (25/05/20) [18] Zambézia
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌4 Notification date of the 1𝑠𝑡 case 56 (17/05/20) [18] Tete
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌5 Notification date of the 1𝑠𝑡 case 56 (17/05/20) [18] Manica
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌6 Notification date of the 1𝑠𝑡 case 50 (11/05/20) [18] Sofala
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌7 Notification date of the 1𝑠𝑡 case 50 (11/05/20) [18] Inhambane
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌8 Notification date of the 1𝑠𝑡 case 59 (20/05/20) [18] Gaza
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌9 Notification date of the 1𝑠𝑡 case 25 (16/04/20) [18] Maputo
𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌10 Notification date of the 1𝑠𝑡 case 0 (22/03/20) [18] Maputo City
𝛽00 Transmission rate 0.0004338908 𝑑𝑎𝑦𝑠−1 Calibrated Niassa
𝛽01 Transmission rate 0.0006562742 𝑑𝑎𝑦𝑠−1 Calibrated Cabo Delgado
𝛽02 Transmission rate 0.0005244815 𝑑𝑎𝑦𝑠−1 Calibrated Nampula
𝛽03 Transmission rate 0.0003171671 𝑑𝑎𝑦𝑠−1 Calibrated Zambézia
𝛽04 Transmission rate 0.0003265976 𝑑𝑎𝑦𝑠−1 Calibrated Tete
𝛽05 Transmission rate 0.0000117325 𝑑𝑎𝑦𝑠−1 Calibrated Manica
𝛽06 Transmission rate 0.0004809578 𝑑𝑎𝑦𝑠−1 Calibrated Sofala
𝛽07 Transmission rate 0.0000198328 𝑑𝑎𝑦𝑠−1 Calibrated Inhambane
𝛽08 Transmission rate 0.0004270757 𝑑𝑎𝑦𝑠−1 Calibrated Gaza
𝛽09 Transmission rate 0.0003929000 𝑑𝑎𝑦𝑠−1 Calibrated Maputo
𝛽010 Transmission rate 0.0001855232 𝑑𝑎𝑦𝑠−1 Calibrated Maputo City
𝜉0 Control parameter of the incidence function 0.039139475 Calibrated Niassa
𝜉1 Control parameter of the incidence function 0.021465552 Calibrated Cabo Delgado
𝜉2 Control parameter of the incidence function 0.024353480 Calibrated Nampula
𝜉3 Control parameter of the incidence function 0.009317492 Calibrated Zambézia
𝜉4 Control parameter of the incidence function 0.014096507 Calibrated Tete
𝜉5 Control parameter of the incidence function 0.000959269 Calibrated Manica
𝜉6 Control parameter of the incidence function 0.008683023 Calibrated Sofala
𝜉7 Control parameter of the incidence function 0.008554156 Calibrated Inhambane
𝜉8 Control parameter of the incidence function 0.021586286 Calibrated Gaza
𝜉9 Control parameter of the incidence function 0.053554408 Calibrated Maputo
𝜉10 Control parameter of the incidence function 0.077848052 Calibrated Maputo City
𝐼00 Initial number of Infectious individuals 6 Calibrated Niassa
𝐼01 Initial number of Infectious individuals 9 Calibrated Cabo Delgado
𝐼02 Initial number of Infectious individuals 8 Calibrated Nampula
𝐼03 Initial number of Infectious individuals 5 Calibrated Zambézia
𝐼04 Initial number of Infectious individuals 6 Calibrated Tete
𝐼05 Initial number of Infectious individuals 7 Calibrated Manica
𝐼06 Initial number of Infectious individuals 8 Calibrated Sofala
𝐼07 Initial number of Infectious individuals 5 Calibrated Inhambane
𝐼08 Initial number of Infectious individuals 4 Calibrated Gaza
𝐼09 Initial number of Infectious individuals 5 Calibrated Maputo
𝐼010 Initial number of Infectious individuals 5 Calibrated Maputo City
𝜎0 Intensity of the public interventions 0.142309933 Calibrated Niassa
𝜎1 Intensity of the public interventions 0.126971885 Calibrated Cabo Delgado
𝜎2 Intensity of the public interventions 0.124929708 Calibrated Nampula
𝜎3 Intensity of the public interventions 0.119616215 Calibrated Zambézia
𝜎4 Intensity of the public interventions 0.140194250 Calibrated Tete
𝜎5 Intensity of the public interventions 0.344212494 Calibrated Manica
𝜎6 Intensity of the public interventions 0.108525353 Calibrated Sofala
𝜎7 Intensity of the public interventions 0.140509810 Calibrated Inhambane
𝜎8 Intensity of the public interventions 0.121579276 Calibrated Gaza
𝜎9 Intensity of the public interventions 0.129062435 Calibrated Maputo
𝜎10 Intensity of the public interventions 0.108669405 Calibrated Maputo City
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In the model calibration process, we used an effective population and the cumulative case data recorded by [18]
between March and August 2020. For each province, the effective population corresponds to a proportion of the
inhabitants from the districts with the highest number of cumulative cases in the first wave of COVID-19 infections
inMozambique according to the data from the IVGeneral Population Census of 2017. To perform the calibration, we
used a combination of the Hyperband and Tree-Structured Parzen Estimator (TPE) algorithms, both implemented
in the Python library Optuna, developed by [30]. The performance of the calibrated parameters was evaluated using
the root mean square error as a metric, given by the Eq. 8

𝑅𝑀𝑆𝐸 =

√∑𝑇
𝑡=1(𝑦𝑡 − 𝑦̂𝑡)2

𝑇 , (8)

where 𝑇 represents the calibration period, 𝑦𝑡 are the cummulative case records and 𝑦̂𝑡 are the cummulative cases
generated by the model.

It is important to mention that for each province, four parameters were adjusted: the initial transmission rate
(𝛽0𝑖 ), the incidence control parameter (𝜉𝑖), the initial number infectious individuals (𝐼

0
𝑖 ) and the intensity of the

public interventions (𝜎𝑖). These parameters are crucial for our study because, during the first wave of COVID-19
infections in Mozambique, a heterogeneity in the dynamics of virus transmission was observed between provinces.
It is presumed that this was caused by differences in the magnitude of various factors, including population density,
geographic connectivity, social behavior, and adherence to public health protection measures in each province. A
full list of parameter definitions, baseline values, and literature sources is presented in Table 2 above.

3 Results

Sensitivity analysis
For eachprovince, we conducted a sensitivity analysis of the four calibrated parameters. This analysis reveals how the
variation in parameters and initial conditions of themathematicalmodel affects a quantity of interest [31]. Sensitivity
Sobol indices can be classified into first-order indices, second-order indices, and total-order indices [32]. In this study,
we investigated the total-order Sobol index, which measures the contribution of a parameter to the variance of our
quantity of interest (the cumulative number of cases) in each province, including both its first-order effects and all
higher-order interactions. To assess the index, it is imperative to calculate the variance attributed to a parameter
by evaluating its singular impact alongside its synergistic interactions with other parameters across all conceivable
interactions. To carry out this process, we first defined a range of [−30%,+30%] for each calibrated parameter and
then used the Python library SALib, as implemented by [32], to obtain the sensitivity index values.
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Figure 4: Total-order Sobol indices of the number of cummulative cases for each Mozambican province. The length
of the bars indicate the mean values, while the thinner black lines display the 95% confidence interval.
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The results are presented in Figure 4. In all provinces except for Manica, the mean values of the total-order
Sobol indices for all four parameters are close to 1. This indicates that, in these provinces, all four parameters in-
teractively contribute equally to the uncertainty in the model’s output [33]. Collectively, they affect the variance of
the cumulative case count, with the influence of each parameter being inherently intertwined with its interactions
with the other parameters, thereby highlighting the imperative of accounting for both individual and higher-order
contributions to the model’s uncertainty.

Furthermore, Figure 4 elucidates broader 95%confidence intervals for the indices of the parameters 𝐼0𝑖 and 𝜎𝑖 ,
thereby indicating a heightened degree of imprecision in the estimations of these parameters’ indices. This observa-
tion implies that these particular parameters contribute to increased levels of variability and uncertainty within the
model’s predictive outcomes. Such variability may stem from the intricate, non-linear interactions between these
parameters and other variables within themodel, or could arise from constraints inherent in the data or the assump-
tions employed to ascertain their contributions. Elucidating these elements could facilitate the refinement of the
model and mitigate uncertainty.

Model predictions
To test the performance of the metapopulation model in capturing the evolution pattern of the first wave of COVID-
19 epidemic inMozambique when variability of contact rates shaped by social distancing directives and nation-wide
lockdowns is taken into account we compare two models: model 1, the model with constant rates and model 2, the
model with time dependent infection rates. Since model 1 is the model considered in our previous work, here our
emphasis is on determining how the interplay between mobility and time dependent infection rates improves the
model in reproducing the observations. We consider the same simulation period as in the previous work fromMarch
22, 2020, to November 30, 2020. During this interval, we used the first 162 days (from March 22, 2020, to August
31, 2020) to adjust the model and the subsequent 91 days to predict the model’s behavior. The occurrence of the
peak between August and October 2020, as well as the exponential growth phase of the first wave, were determining
factors in choosing the model adjustment period.
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Figure 5: Cumulative case data (black dots) and model fits for each province, with national data in the last row
of column 3. The blue curve represents the model without mobility off (𝜏 = 0), the red curve represents the
metapopulation model with mobility (𝜏 = 1), and the dashed orange curve represents the model with mobility
and isolation of Maputo City (𝜏 = 1, 𝑇10𝑗 = 0 = 𝑇𝑗10). The green vertical line denotes the model initialization date
(𝑡 = 𝑆𝑇𝐴𝑅𝑇_𝐷𝐴𝑌𝑖), and the magenta vertical line marks the end of the fit and the start of predictions (day 162).
The interquartile range for the red curve is highlighted in light red.
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Fig. 5 shows the fit of the SEIAHRD model with time-dependent transmission rates in three scenarios: model
without mobility (𝜏 = 0), model with mobility (𝜏 = 1) and model with mobility and isolation of Maputo City. We
observe that only themetapopulationmodel curves are close to each other and trail the data points with a satisfactory
level of accuracy. The observed divergence within the prediction interval, wherein solely the metapopulation model
incorporating mobility corresponds with the trajectory of the actual data, indicates that human movement across
provinces markedly impacted the transmission patterns during the initial wave of the pandemic. This outcome
accentuates the pivotal significance of interprovincial mobility in precisely elucidating the dynamics of the COVID-
19 epidemic in Mozambique. The failure of the model devoid of mobility, along with the model that isolates Maputo
City, to replicate the observed trends within the prediction interval underscores the necessity of integrating realistic
mobility patterns within epidemic models. In the absence of mobility, the spatial interconnectivity and circulation
of individuals, which serve as critical drivers of viral propagation, are neglected, culminating in overly simplified
projections. Likewise, the isolation of Maputo City, although theoretically a sound containment strategy, may fail to
accurately represent the practical dynamics of mobility restrictions and their enforcement, potentially resulting in
discrepancies within the model’s predictive efficacy.

These results are in agreement with previous research [34, 11] that highlight the complex interplay between mo-
bility and transmission rates, although not ignoring other factors such as risk perception that do affect both mobility
and contacts, therefore, potentially affecting their mutual relationship [11]. They also exemplify the imperative of
employing time-dependent transmission rates, as static rates inadequately capture the temporal variability engen-
dered by intervention measures and behavioral adaptations. Other findings [35] suggest that these parameters fa-
cilitated the analysis of how SARS-CoV-2 traversed regional boundaries and how interventions such as quarantines,
travel restrictions, and social distancingmeasures influenced infection prevalence. To ilustrate the critical role of the
interplay between these two factors, for each simulation scenario mentioned above, we compare the performance
of the two models by computing the normalized Root Mean Square Error (RMSE) between the model’s predicted
data and the actual cumulative cases, using the Python library Scikit-learn, developed by [36]. For the case of the
model without mobility (i.e. scenario SC1) the findings of this assessement are depicted in Fig. 6, which contrasts
the Root Mean Square Error (RMSE) values for a model that is based on constant contact rates (represented by grey
bars), against the same model with time-dependent contact rates (illustrated by dark blue bars). The results suggest
that the model integrating time-dependent contact rates attained marginally lower RMSE values in comparison to
the model based on constant contact rates. We note however that the differences in RMSE values between the two
models are not substancial. A plausible rationale for this observation resides in the fact that in the abscence of inter-
regional mobility, variability in contact rates alone shaped by social distancing directives is insuffcient to explain the
dynamics of the pandemics. Another important key finding that is ilustrated Fig. 6 is that the upgrade from model
with no mobility to the model with mobility has significantly improved the model fit and forecast quality. The re-
sults indicates that the model utilizing time-dependent contact rates consistently yielded inferior RMSE values in
comparison to the model predicated on constant rates. It is particularly noteworthy that, with the exception of the
provinces of Cabo Delgado and Nampula, the discrepancies in RMSE between the twomodels are statistically signif-
icant, thereby leading to the inference that the model with time-dependent contact rates exhibited superior efficacy.
Futhermore, the third column ilustrating the isolation of Maputo City indicates the role of this region in shaping the
pattern of the epidemic in the rest parts of the country, highlighting the role of strongly connected regions.

These outcomes robustly substantiate our hypothesis that contact rates within each province of Mozambique
exhibit temporal fluctuations. Such temporal variability is likely shaped by the intervention strategies enacted by
governmental authorities during the initial wave of COVID-19 infections. These interventions exerted a direct in-
fluence on the transmission rates of COVID-19, as demonstrated by earlier research [34, 11]. Moreover, the gradual
exponential increase observed in cumulative case counts throughout the first wave in Mozambique [28] reinforces
the efficacy of these interventions.

The findings emphasize the significance of incorporating time-dependent dynamics in contact rates when con-
ducting epidemicmodeling, as this methodology captures the intricate effects of intervention strategies and provides
a more precise representation of disease transmission patterns.
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Figure 6: Comparison of the Root Mean Square Error (RMSE) between model 1 (constant contact rates) and model
2 (time-dependent contact rates) for the thee simualtion scenarios: without mobility (SC1), with mobility (SC2) and
with mobility and isolation of Maputo City (SC3), presented by province. The gray bars represent the RMSE of the
model 1, while the dark blue bars represent the RMSE of the model 2.

4 Discussion and Conclusion
Here we compared two models for assessing the role of human mobility in the dynamics of COVID-19 epidemic in
Mozambique. Using a model with constant transmission rates, in our previous work [37] we found that in the ab-
sence ofmobility among provinces themodelwas unable to predict the epidemic curve during the first wave. Instead,
the most accurate quantitative description of the observations in each province was attained when mobility was ac-
tivated. It has long been known that human mobility is crucial at the beginning stages of an epidemic, when the
infection is seeded in various locations [35, 2, 16]. Furthermore, mobility may also affect contact rates which in turn
affect disease transmission [16]. Therefore, we now extended the analysis presented in the previous work with the
intention to evaluate if incorporating the variability of contact rates shaped by social distancing directives and nation-
wide lockdowns improves the performance of the mobility model in predicting the observations. This is achieved by
modifying the force of infection to include changes in the infection rate according to the cronology of implemented
interventions. Since the goal was to assess the performance of the mobility model with time dependent contact rates
we tested the same simulation scenarios as in the previous work: Scenario 1, a model without mobility; Scenario 2,
a model with mobility; and Scenario 3, a model with mobility and isolation of Maputo City. The simulation results
revelead that Scenario 2 was the most effective in capturing and reproducing the pattern of cumulative COVID-19
cases in the country. In contrast, Scenarios 1 and 3 demonstrated a slowdown in exponential growth, resulting in
significant reductions in the cumulative number of cases and in higher RMSE compared to Scenario 2. These find-
ings highlight that during the first wave of the COVID-19 pandemic, interprovincial mobility was one of the main
factors driving the spread of the virus, which started in Maputo City to other regions of the country. Furthermore,
the results indicated that the control measures implemented by government authorities significantly influenced the
variability of contact rates across provinces over time, suggesting that information on the influence of inter-regional
mobility on disease spread is useful for regional policymakers. Based on the results of this study, we conclude that
interprovincial mobility should be prioritized in the planning of effective intervention strategies for future epidemics
similar to COVID-19 and how such interventions shape the nature of contact rates. In particular, the connectivity
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of Maputo City with other provinces emerges as a critical aspect requiring the attention of policymakers. Focusing
on these factors could optimize control measures, enhance the effectiveness of epidemic responses, and minimize
the health and socio economic impact of the disease on communities. The sensitivty analysis on key four model
parameters: initial transmission rate, incidence control parameter, intensity of interventions and initial number of
infectious individuals indicated that all parameters interactively and strongly contributed equally to model output.
Of particular interest is the estimate of initial number of infected individuals to initialize the epidemic in each loca-
tion, which varied significantly from the figures reported by government authorities. Such differences stem from a
number of factors including the incubating period and asymptomatic cases for young health people, late inspection
and delayed quarantine policies and limited testing infrastructure.

For subsequent research endeavors, we propose an extension of our model to incorporate the synchronization of
interventions at both local (provincial) and global (national) levels. A notable divergence exists between the empir-
ical cumulative data and the modeled trajectory during the calibration phase in the provinces of Cabo Delgado and
Nampula. These observations suggest that there is a certain heterogeneity in terms of the number of contacts that is
not captured by the currentmodel. In forthcoming investigations, it is advisable to examine ensemblemethodologies
and cross-validation techniques to further refine the model’s precision in these provinces, in addition to exploring
alternativemobility models and evaluating the ramifications of partial compliance with isolation protocols. Further-
more, the influence of heterogeneity in contact patterns across provinces necessitates additional scrutiny to enhance
our comprehension of localized transmission dynamics.

The specification of precise model parameters represents an essential and often complex element of epidemi-
ological modeling, particularly in situations that involve extensive datasets or newly emerging pathogens. These
complexities emerge from a diverse array of factors, including data accessibility, variability, and the fundamental
premises that are intrinsic to the modeling paradigm. For instance, parameters such as the basic reproduction num-
ber (ℛ0), transmission coefficients, and recovery rates are frequently extracted from limited or incomplete datasets,
consequently introducing a level of uncertainty [38]. The complexity intensifies in circumstances characterized by
heterogeneous populations or adaptive interventions. For example, the execution of non-pharmaceutical strategies
such as lockdowns alters contact patterns in manners that are challenging to quantify [39]. Similarly, real-time
parameter estimation techniques such as Kalman filters, while effective, are heavily reliant on the quality and fre-
quency of data updates, which may demonstrate significant variability across disparate regions [40]. In scenarios
involving large datasets, computational limitations and challenges related to parameter identifiability often arise.
Identifiability refers to the ability to uniquely estimate model parameters based on the available data, a condition
that can be compromised in highly intricate models or when parameters display interdependencies [41]. This con-
cern is particularly relevant in models that integrate mobility data, as evidenced in studies concerning COVID-19,
where travel behaviors are heterogeneous and influenced by both voluntary actions and regulatory interventions
[2]. Moreover, assumptions regarding seasonality, environmental factors, and population diversity can significantly
influence the parameterization process. For example, the incorporation of seasonal forcing into models, as explored
in the context of SARS-CoV-2, underscores the difficulties associated with accurately projecting long-term trends in
the absence of robust data [41]. Future research endeavors should aim to address these challenges by leveraging
advancements in data science, inclusive of machine learningmethodologies, which possess the potential to enhance
parameter estimation and model calibration. Furthermore, the advocacy for open data initiatives and standardized
methodologies can alleviate uncertainty and strengthen reproducibility across various investigations. These strate-
gies are essential for the refinement of epidemiological models and the assurance of their dependability in guiding
public health policymaking.

In the realm of modeling the dynamics associated with infectious diseases, the accuracy of cumulative case data
is critical for the effective estimation of parameters and the validation of predictivemodels. However, such data often
face biases arising from a multitude of factors, including limitations in testing capacity, phenomena of underreport-
ing, and delays linked to the reporting of cases. These obstacles are particularly pronounced in contexts marked by
resource limitations, where the accessibility of diagnostic facilities and the promptness of data collectionmayprove to
be inconsistent [42]. The capability for testing exhibits substantial heterogeneity across various geographical regions
and temporal contexts, thereby affecting the identification and subsequent documentation of cases. For instance, in
the early stages of the COVID-19 pandemic, the limited access to diagnostic tests led to considerable underreporting
of cases in numerous low- and middle-income countries [43]. Such underreporting possesses the capacity to skew
model outputs, ultimately resulting in the underestimation of infection rates and the postponement of peak identi-
fication in outbreaks. Moreover, delays in reporting, frequently attributable to logistical constraints or centralized
public health systems, may introduce temporal inconsistencies that inaccurately represent the epidemic curve [44].
Furthermore, cumulative data inherently tends to smooth out temporal fluctuations, potentially obscuring the ef-
fects of short-term intervention strategies such as lockdowns or localized travel restrictions. For instance, a sudden
reduction in reported cases, resulting from underreporting during weekends or holidays, maymisleadingly suggest a
decrease in transmission intensity, leading to ill-informed policy decisions [45]. To mitigate these limitations, mod-
eling frameworks can be developed to account for reporting biases through the incorporation of correction factors or
sensitivity analyses. Advanced statistical techniques, including Bayesian hierarchical models, possess the capability
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to rectify acknowledged biases by integrating auxiliary datasets, such as excess mortality or syndromic surveillance
data [46]. By recognizing and addressing these data-related obstacles, the robustness and applicability of epidemic
models can be substantially improved, thus providing more reliable insights for public health interventions.

Our theoretical framework posits uniform contact rates within each province, thereby streamlining the computa-
tionalmethodology; however, thismay inadequately reflect the intricacies inherent in actual transmission dynamics.
In practice, contact rates exhibit considerable variability within provinces, influenced by factors such as population
density, levels of urbanization, economic activities, and cultural practices [47, 48]. For example, urban regions typi-
cally demonstrate elevated contact rates as a consequence of denser populations andmore frequent interpersonal in-
teractions, in contrast to rural areas, whichmay present lower rates attributed to more dispersed populations and re-
stricted mobility [49]. This presumption of homogeneity could yield skewed assessments of transmission dynamics,
especially in provinces characterized by pronounced rural-urban disparities or significant socioeconomic diversity
[50]. Neglecting to consider these intraprovincial discrepancies may culminate in an underappreciation of high-risk
zones or an inflation of the perceived efficacy of interventions in regionswith low population density. Enhancing this
dimension of the model could necessitate the incorporation of spatially explicit data concerning population density,
mobility trends, and socioeconomic indicators to formulate contact matrices specific to each region. Methodologies
such as agent-based modeling (ABM) or network-based frameworks are particularly adept at capturing heteroge-
neous contact rates and their temporal fluctuations across more granular spatial dimensions [50]. Furthermore,
utilizing high resolution mobility datasets, including those derived from mobile phone usage or transport systems,
can furnish vital insights into local contact patterns [51]. Subsequent research endeavors should prioritize the in-
tegration of such heterogeneities to bolster the precision and detail of predictive analyses, particularly in contexts
characterized by diverse demographic and geographic attributes. Acknowledging these variations will augment the
applicability of models in formulating targeted interventions that effectively address localized transmission risks.
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