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Resumo

O petroleo e o gas sdo as principais fontes de energia priméaria no mundo. A partir desses recursos, obtém-se deriva-
dos e petroquimicos que alimentam a producio de energia, servigos e diversos produtos. Entre as etapas cruciais da
producdo de petroleo estdo a classificagdo dos reservatdrios, a perfuracdo e a analise dos dados geoldgicos para de-
terminar a viabilidade da extracdo. No entanto, esses processos costumam ser feitos manualmente por especialistas
ou por métodos que sdo caros, imprecisos e demorados. Neste contexto, este trabalho tem o objetivo de classificar
litologias e prever a taxa de carbono orginico total por meio da aplicagdo de técnicas de aprendizado de méquina, em-
pregando algoritmo genético com busca exaustiva para otimizacdo dos métodos de regressdo/classificacdo. A base de
dados utilizada ¢ referente a um pogo do Campo Marlim, Bacia de Campos. Os resultados mostram que o Extreme
Gradient Boosting (XGB) obteve bom desempenho nos experimentos realizados, com média de acurdcia=0,941 e
RMSE = 0,150 no conjunto de testes, sendo uma alternativa para auxiliar especialistas na tarefa de classificagido de
litologias e predi¢do de taxa de carbono total.

Palavras-chave
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Abstract

Oil and gas are the main sources of primary energy in the world. From these resources, derivatives and petroche-
micals are obtained that feed the production of energy, services and various products. Among the crucial stages of
oil production are the classification of reservoirs, drilling and analysis of geological data to determine the feasibility
of extraction. However, these processes are often done manually by experts or using methods that are expensive,
inaccurate and time-consuming. In this context, this work aims to classify lithologies and predict the total organic
carbon rate through the application of machine learning techniques, employing a genetic algorithm with exhaustive
search to optimize regression/classification methods. The database used refers to a well in Campo Marlim, Campos
Basin. The results show that Extreme Gradient Boosting (XGB) performed well in the experiments carried out, with
average accuracy = 0.941 and RMSE = 0.150 in the test set, being an alternative to assist specialists in the task of
lithology classification and rate prediction. total carbon.

*Este artigo ¢ uma versdo estendida do trabalho apresentado no XXVII ENMC Encontro Nacional de Modelagem Computacional e XV ECTM
Encontro de Ciéncia e Tecnologia de Materiais, ocorridos em Ilhéus - BA, de 1 a 4 de outubro de 2024.
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1 Introducao

O petréleo é uma mistura complexa de hidrocarbonetos, contendo também pequenas quantidades de outros compos-
tos quimicos [1]]. Analisar esses componentes, entender suas interacdes e avaliar seu impacto na producgio sao etapas
cruciais para determinar o potencial de producdo de um poco [2]]. Neste contexto, existe um grupo de areas dentro da
engenharia de petrdleo dedicadas a utilizacio de ferramentas da matematica aplicada para que se obtenha um maior
conhecimento das propriedades e das condic6es de escoamento nos reservatorios portadores de hidrocarbonetos [3]].
Deve-se destacar, ainda, o papel fundamental das aplicacdes computacionais na construcdo de ferramentas tteis nos
estudos de reservatérios [4].

Um aspecto crucial na caracterizagdo de um reservatorio € a litologia. A partir dos perfis petrofisicos coletados
nos pocos, é possivel compreender o comportamento de um campo especifico. A descricido das rochas, baseada em
caracteristicas como cor, composi¢do mineraldgica e tamanho dos grios, é organizada em classes litologicas. Com
esse entendimento, é possivel avaliar o potencial e a heterogeneidade do reservatorio [3].

A andlise manual de litologias de perfil de poco é um procedimento trabalhoso que envolve um tempo gasto
consideravel por um especialista competente, mesmo quando auxiliado por métodos graficos [6]. O problema torna-
se particularmente desafiador a medida que aumenta o niumero de perfis de pocos a serem avaliados. Portanto, seria
util automatizar o processo de caracterizacio de reservatorios.

Na avaliacio de rochas geradoras de petrdleo, o Carbono Organico Total (TOC) é um indicador-chave para a de-
terminacdo do teor de hidrocarbonetos. A previsdo precisa do TOC é essencial para a exploragdo e o desenvolvimento
bem-sucedido dos recursos de petroleo e gés [7]].

O TOC ¢ uma maneira para qualificar a capacidade de geracdo da rocha geradora. A determinacéo precisa do
TOC em amostras de solo e sedimentos é fundamental para a industria de exploragio de hidrocarbonetos, fornecendo
informacdes essenciais sobre a presenca e qualidade da matéria orginica.

Os métodos mais utilizados para calcular o TOC sdo andlises geoquimicas, realizadas em laboratério. Para isso,
tornam-se necessarios fragmentos de rocha ou mesmo testemunhos, aumentando os custos de exploragio. Pesquisas
que apresentam abordagens para estimar o TOC a partir de dados principais tém sido cada vez mais relatadas na
literatura.

Diante do exposto, este trabalho busca aplicar métodos de aprendizado de maquina para classificar litologia e
realizar a predicdo de TOC. Dessa forma, serd possivel auxiliar o processo de caracterizacdo de reservatorios de
petroleo diminuindo o tempo gasto nas andlises.

A defini¢do dos parimetros ideais para maximizar o desempenho dos métodos de aprendizado de maquina é
um problema comum. Para resolver essa questdo, o Algoritmo Genético serd empregado para otimizar os modelos,
buscando encontrar os melhores pardmetros e melhorar a qualidade das estimativas.

O artigo esta dividido da seguinte maneira: a Secéo 2 trata dos trabalhos relacionados, a Secdo 3 apresenta os
dados utilizados e a metodologia empregada, a Se¢do 4 explora os resultados e a Secdo 5 fornece a conclusao.

2 TRABALHOS RELACIONADOS

A previsdo do Carbono Organico Total (TOC) e classificacdo de litologias sdo fundamentais para avaliar a capacidade
de geracdo de hidrocarbonetos das rochas geradoras. Na literatura, diversas abordagens tém sido exploradas para
tornais tais processos mais rapidos e com melhores desempenhos.

Yang et al. [8] aplicaram técnicas de transformada wavelet e agrupamento K-means modificado para classifi-
car rochas metamoérficas do Principal Furo Cientifico Continental Chinés (CCSD-MH). Os resultados mostraram
maior precisdo na identificagdo estratigrafica, destacando a eficicia dessa abordagem para melhorar a classificacio
de rochas metamorficas.

Elkatatny 9] prop6s um método eficiente para estimar o teor de carbono organico total em reservatorios de folhe-
lho utilizando registros petrofisicos. Com um modelo SaDE-ANN otimizado, alcancou alta precisao na predicdo do
TOC usando dados como raios gama, tempo de compressao, resistividade e densidade bulk. A nova correlacdo empi-
rica desenvolvida superou significativamente modelos anteriores, reduzindo os erros percentuais absolutos médios
em até 67%.

Xie et al. [10] avaliaram cinco métodos de aprendizado de maquina (Naive Bayes, Maquina de Vetores de Su-
porte, Rede Neural Artificial, Floresta Aleatéria e Gradient Tree Boosting) usando dados dos campos de gas Daniudui
e Hangjingi. O estudo utilizou otimizacio de hiperparametros e validacdo cruzada para determinar o melhor mo-
delo. Os resultados indicam que os métodos de ensemble apresentam menor erro de previsdo e maior precisdo na
classificacdo da litologia, mesmo em classes de arenito.
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Saporetti et al. [11]] utilizaram seis métodos de aprendizado de maquina com técnicas de balanceamento de
dados para classificar dados da Bacia de South Provence. Os resultados indicam que o balanceamento melhorou
o desempenho dos classificadores e a selecio de modelos otimizou os pardmetros. A ferramenta computacional
desenvolvida ajuda na identificacdo das heterogeneidades dos reservatorios.

O estudo de Asante-Okyere et al. [12] introduziu um modelo avancado de rede neural convolucional (CNN),
o0 MWL-CNN, que integra dados de composicdo mineral do xisto e registros geofisicos de pogos para previsdo de
TOC. Os resultados mostraram que a inclusdo da composi¢cdo mineral, especialmente componentes como feldspato
e pirita, melhorou significativamente a precisdo do modelo em comparacdo com abordagens baseadas apenas em
registros de pogos (WL-CNN).

Saporetti et al. [13] destacaram a importincia da anélise de TOC na exploracdo de intervalos geradores de hi-
drocarbonetos. Este estudo previu TOC utilizando uma abordagem hibrida, integrando modelos de aprendizado de
maquina com o Algoritmo de Otimizacdo Grey Wolf para ajustar parametros. A metodologia, avaliada com amos-
tras do campo de gas de xisto YuDongNan, demonstrou que métodos de aprendizado de méaquina assistidos por
algoritmos evolutivos podem estimar TOC com precisdo.

Silva et al. [[14] propuseram uma abordagem para a previsdo de TOC utilizando redes neurais convolucionais
(CNNs) otimizadas por evolugédo diferencial. O estudo utilizou pardmetros selecionados por metaheuristicas e va-
lidagdo cruzada para melhorar a flexibilidade do modelo. A abordagem foi validada com amostras de varias bacias
sedimentares, demonstrando o potencial das CNNs para prever concentracoes de TOC de maneira eficiente e precisa.

Percebe-se que aplicar métodos de aprendizagem de méaquina ¢ algo promissor e empregar meta-heuristica vai
auxiliar a encontrar o melhor modelo, possibilitando realizar a previsdo/classificacio com um melhor desempenho.
Entdo, objetiva-se avaliar o uso do Algoritmo Genético com busca exaustiva para encontrar os melhores métodos
para classificar litologias e prever a taxa de Carbono Orgéanico Total de um pogo do Campo de Marlim.

3 MATERIAIS E METODOS

3.1 Bases de Dados

O foco deste estudo é a drea do Campo de Marlim, situado na regido nordeste da Bacia de Campos, aproximadamente
110 km a leste do Cabo de Sdo Tomé, na costa do Rio de Janeiro, com uma extenséo total de 257, 6km?.

Os dados petrofisicos de pocos sdo disponibilizados pela Agéncia Nacional do Petréleo, Gas Natural e Biocom-
bustiveis do Brasil (ANP), possuindo informacoes de 309 amostras e 12 caracteristicas, que s3o Raios Gama (GR),
Neutronico (NPHI), Sénico (DT), Didmetro de perfuracdo (CALI), Perfil de densidade (DRHO), Densidade (RHOB),
Fator fotoelétrico (PEF), Caliper (CALI), Resistividade Profunda (ILD), Resistividade média (ILM), Resistividade
microesférica (SFLA e SFLU) e Potencial Espontaneo (SP) além dos valores de TOC e as classes litologicas que sdo
divididas em Arenito, Marga e Argilito.

3.2 Validacao Cruzada

A validacdo cruzada k-fold (k-fold cross-validation) é um procedimento de divisdo dos objetos nos conjuntos de trei-
namento e teste, em que cada objeto é utilizado uma unica vez em um dos k conjuntos de teste e (k-1) vezes em um
dos k conjuntos de treinamento [[15]]. Esse processo ¢ repetido k vezes, utilizando em cada ciclo uma partigao dife-
rente para o teste, sendo o desempenho final dado pela média dos desempenhos observados sobre cada subconjunto
de teste [16].

3.3 Meétodos

Para o processo de modelagem computacional dos dados foram aplicados os seguintes algoritmos supervisionados de
Aprendizado de Maquina que podem ser utilizados tanto em regressdo como em classificacdo: K-Nearest Neighbors
(KNN), Extreme Learning Machine (ELM), Support Vector Machines (SVM) e Extreme Gradient Boosting (XGB).

O ELM éumarede neural artificial feedforward com apenas uma camada oculta, com pesos de conexao de entrada
escolhidos aleatoriamente [17,[18]. A saida do ELM é descrita como

L
9 =BG (ax+b) 6))

i=1

onde {(x;,y;),x; € R, y; € RLi=1,2,---,N}sdo as amostras de treinamento, L o ndmero de neurdnios ocultos,
{Bi,i=1,2,---,N} os pesos de saida, G a funcdo de ativagio, {¢;,i = 1,2, ---, N} é o vetor de pesos, b; é o bias para o
no oculto i, e y é a saida predita.
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A Eq. pode ser estruturada como HB = T, onde H;; = G(aj,bj,x;) e T; = y;. A fungdo objetivo qua-
dratica Zfil [l i — ¥ |l= 0 ¢é minimizada usando minimos quadrados, e o vetor de peso de saida é dado por
-1
g = (HTH) H'T.
Méquina de Vetores de Suporte (SVM) ¢ um modelo de aprendizado de maquina capaz de fazer classificacoes
lineares e ndo lineares [19]20] e regressao [21]]. O modelo linear do classificador SVM prediz a classe de uma instancia

nova x calculando a funcio de decisio wTx + b, onde b é o bias e w é o vetor de pesos das caracteristicas. Assim, a
saida € classificada de acordo com a Eq.

. 0 ,sewlx<0

1 ,sew'x>0

Portanto, treinar um classificador SVM linear significa encontrar os valores de w e b que fazem com que a margem
ao redor da fronteira de decisdo seja a mais ampla possivel, ao passo que a margem seja rigida (evita as violagdes de
margem) ou seja suave (restringindo as violagdes de margem), sendo controlado pelo parametro C na Eq. (3)). Para
classificagdo SVM néo linear é empregado o truque do kernel. Ja para regressio SVM, em vez de tentar ajustar a
maior largura de margem possivel entre as duas classes enquanto se restringe as violacdes de margem, tenta ajustar
o maior numero possivel de instdncias entre as margens enquanto restringe a margem de violagdes (ou seja, das
instancias fora da “rua” entre as margens).

e e . 1 T m i
minimiza  JW'W + Cxi ¢ . '
sujeitaa tOW'xD +b)>1-¢lem¢i>0,i=1,---,m

3

onde ¢ > 0 é uma variavel que calcula o quanto a instancia i pode violar a margem, e o hiperparametro C permite
definir a troca entre um classificador linear com margem rigida (C = 0) e um classificador linear de margem suave
(C = 1). Importante ressaltar que, como o algoritmo SVM usa internamente o cdlculo de distancia, deve ser feito o
escalonamento dos atributos preditivos no pré-processamento.

KNN foi desenvolvido pela primeira vez por Fix e Hodges [22], e posteriormente expandido por Cover e Hart [23]]
¢ um algoritmo baseado em proximidade que usa distancia euclidiana para avaliar a proximidade entre cada par de
objetos, assumindo que quanto menor for a distincia entre dois objetos mais semelhantes eles sio [15]. Escolhe-
se um objeto aleatoriamente, a partir disso analisa a classe dos K vizinhos mais préximos, a classe que aparece na
maioria dos K vizinhos € atribuida ao objeto. O KNN apesar de ser um método simples é propenso ao overfitting
pelos seguintes fatores: € sensivel ao ruido nos dados de treinamento, podendo afetar a predicdo em novas amostras,
em espacos de alta dimensionalidade, a distancia entre os pontos se torna menos significativa podendo levar a uma
percepcao errada de similaridade entre pontos e se os dados de treinamento sdo muito desbalanceados ou possuem
uma distribui¢do irregular, o KNN pode se ajustar excessivamente a essas caracteristicas especificas dos dados de
treinamento, prejudicando sua capacidade de generalizacio [24]).

O algoritmo XGB desenvolvido por Chen e Guestrin [23] é do tipo ensemble, combinando modelos sequenci-
almente, de modo que ¢é atribuida uma maior importancia ao aprendizado de objetos que o modelo anterior ndo
conseguiu apresentar uma boa predicdo [26]. E baseado no principio do gradiente descendente, um algoritmo de
otimizacdo onde novas arvores sdo geradas com base nas anteriores, visando reduzir a funcio objetivo dada pela
Eq. () a um menor valor possivel [27].

T
Obsz[jSoj+%(Hj+/1)co§ +yT )
j=1
onde T ¢é o namero de folhas, G ¢ a soma do gradiente da funcdo de perda, H ¢ a soma do Hessiano da funcéo de
perda, w é o vetor das pontuacdes (scores) nas folhas, A e y representam os coeficientes de penalidade.

Na abordagem ensemble do tipo boosting, os modelos sdo induzidos sequencialmente (a saida gerada por um
modelo € recebida como entrada por outro modelo). Para a inducio de cada novo modelo, ¢ atribuida uma maior
importancia ao aprendizado de objetos que o modelo anterior ndo conseguiu apresentar uma boa predicao [26]. As-
sim, no modelo XGB as arvores de decisio sio adicionadas sequencialmente como aprendizes fracos (weak learners)
produzindo um aprendiz forte (strong learner), sendo cada nova arvore treinada para corrigir os erros cometidos
usando a funcdo objetivo dada pela Eq. (@).

3.4 Otimizacao evolutiva sobre hiperparametros

O GASearchCV ¢ uma otimizagdo evolutiva sobre hiperparametros, tendo em vista os scores de validagdo cruzada,
que melhora a precisdo da previsdo do algoritmo genético usando testes aleatorios de seu hiperparametro inicial
[28]. Pode ser usado tanto para problemas de regressdo quanto de classificagdo. A vantagem da implementagdo
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usando busca em grade dos hiperparametros é que consegue-se definir quais hiperpardmetros so inteiros, quais sdo
categéricos e quais sdo reais de forma que a variagdo é discreta ou continua de acordo com o tipo. Dessa, forma
ndo precisa fazer a busca continua em todos os parametros e realizar uma transformacio para inteiro e posterior
atribuicdo a dados categoricos.

O método de validagdo cruzada utilizado foi o K-Fold com k=5, tamanho da populacdo = 20, n° de geracdes = 30,
probabilidade de crossover = 0,9, probabilidade de mutacio = 0,08, scoring = acurdcia para classificacdo de litologia
e scoring = raiz do erro quadratico médio para predicdo de TOC. A descri¢cdo dos modelos com os hiperparametros
que foram otimizados e as respectivas variagdes encontra-se na Tabela[l]

Tabela 1: Descricdo dos modelos

Método Pardmetros Descri¢ao Configuragdo
ELM activation_func Funcio de ativacao. |identity, logistic, tanh, reLu|
n_hidden Numero de neurdnios. [20, 150]
alpha Forca de regularizagdo. [0.001, 10]
KNN n_neighbors Numero de vizinhos mais préximos. [2, 30]
weights Funcio de peso usada na previsao. [uniform, distance]
SVM C Ajusta a penalidade dos erros na [20, 200]
regressdo/classificacao.
gamma Define até onde chega a [0.001, 0.1]
influéncia de um unico exemplo
de treinamento.
XGB n_estimators Numero de arvores na floresta. [5, 300]
max_depth Profundidade maxima. [2,10]
learning_rate Taxa de aprendizagem. [0.001, 0.1]

3.5 Meétricas

Para a avaliacdo do desempenho dos métodos utilizados para a predicdo de TOC, foram utilizadas as seguintes mé-
tricas: o coeficiente de determinacio (R?), o erro médio absoluto(MAE), o erro quadratico médio (MSE), raiz do
erro quadratico médio (RMSE) e o erro relativo absoluto médio (MARE) . Onde y; representa os valores medidos da
variavel dependente (TOC), y; representa os valores preditos de TOC, y; o valor médio de TOC e n o tamanho da
amostra.

N N
« R2= i =92/ 00— )
i=1 i=1

1 N
MAE = = > |y; = J|
Ni:l

1 N
MSE = — > (y; — §)
Ni=1

1 N
« RMSE = | < > (i —9)?
Ni:l
1 (yi—
« MARE = — :
N; Vi

Para a classificac@o de litologia foram empregadas as seguintes métricas Acuracia (AC), F1, Recall (Re), Kappa e
Precisio (Pr).
1 N
« AC = N 2oy I Ca) = y)
onde, f(x;) é a classe predita as amostras de teste e y; é a classe verdadeira dessas amostras. Considerando que
I(true) =1eI(false) = 0.

2TP
*Fl= P fFP+FN
TP
s Re=T1p N
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Tabela 2: Média e Desvio Padrdo das Métricas na Predi¢cdo de TOC - Conjunto de Treinamento

Método R2 RMSE MAE MARE MSE
ELM | 0.238(0.042) | 0.175(0.009) | 0.136(0.007) | 0.477(0.024) | 0.031 (0.003)
KNN | 0.950(0.151) | 0.014 (0.043) | 0.010 (0.031) | 0.035(0.106) | 0.002 (0.006)
SVR | 0.673(0.081) | 0.114(0.017) | 0.067 (0.016) | 0.242(0.055) | 0.013(0.004)
XGB | 0.754(0.107) | 0.096 (0.028) | 0.065(0.018) | 0.230(0.065) | 0.010 (0.004)

Tabela 3: Média e Desvio Padrdo das Métricas na Predi¢cdo de TOC - Conjunto de Teste

Cabral et al.

Método R? RMSE MAE MARE MSE
ELM | 0.139(0.121) | 0.186(0.029) | 0.145(0.013) | 0.510(0.054) | 0.035(0.012)
KNN 0.294 (0.138) | 0.167(0.026) | 0.123(0.011) | 0.414(0.039) | 0.029 (0.009)
SVR | 0.329(0.110) | 0.164(0.028) | 0.117(0.012) | 0.421(0.040) | 0.028 (0.010)
XGB | 0.422(0.108) | 0.150(0.025) | 0.103 (0.012) | 0.353(0.038) | 0.023 (0.008)
TP
" Pr=TpiEp
TP, FN e FP sao o numero de verdadeiros positivos negativos e falsos positivos.
Po — PE
+ KAPPA = 1-P,
n° de concordancias
- P,

" no de concordancias + n° discordancias

N
- Pp=2._,(pia X piz)
onde N € o namero de categorias, i é o indice de categorias, p;; € a ocorréncia da categoria de proporcdo
i para o avaliador 1, p;, € a ocorréncia da categoria de proporc¢do i para o avaliador 2.

4 RESULTADOS E DISCUSSAO

Para a avaliacdo do desempenho dos métodos utilizados para a predicdo de TOC, foram utilizadas as seguintes métri-
cas: o coeficiente de determinacdo (R?), o erro médio absoluto (MAE), o erro quadratico médio (MSE), raiz do erro
quadratico médio (RMSE) e o erro relativo absoluto médio (MARE). As Tabelas[2e[3|apresentam os desempenhos do
métodos utilizados na predi¢do de TOC para o conjunto de treinamento e teste, respectivamente. Pode-se observar
que o KNN obteve o melhor resultado no conjunto de treinamento (R? = 0.950, RMSE = 0.014), seguido do XGB (R?
= 0.754, RMSE = 0.096). Porém no conjunto de teste 0 XGB (R? = 0.422, RMSE = 0.150) foi 0o método com melhor
resultado e 0 KNN (R? = 0.294, RMSE = 0.167) o terceiro com melhor resultado. Este resultado sugere que houve
um overfitting com o KNN, pois o desempenho dele no conjunto de treinamento foi muito superior ao de teste e ndo
se destacou comparando aos outros métodos. Isso indica que o aprendizado do KNN ficou limitado ao conjunto de
treinamento, ndo tendo a capacidade de aplicar o aprendizado em amostras desconhecidas.

A Figura [1| exibe os boxplots das métricas no conjunto de teste na predi¢cdo de TOC nas 30 execucdes realiza-
das. Nota-se que o XGB apresentou melhor desempenho se comparado aos outros métodos além de ter uma menor
variacdo nos valores das métricas.

Para a classificacdo de litologia foram empregadas as seguintes métricas Acuracia (AC), F1, Recall (Re), Kappa
e Precisdo (Pr). As Tabelas[4]e[5|mostram os desempenhos do métodos utilizados na classificagao de litologia para
o conjunto de treinamento e teste, respectivamente. Nota-se que um comportamento similar a predicdo de TOC
ocorre, pelo fato de se tratar dos mesmo dados de entrada porém com variavel de saida diferente. O KNN obteve
melhor resultado no conjunto de treino e o XGB no de teste e nesse caso também o indicativo de overfitting.

A Figura 2 exibe os boxplots das métricas no conjunto de teste na classificagdo de litologia nas 30 execucdes
realizadas. Nota-se que o XGB apresentou melhor desempenho se comparado aos outros métodos além de ter uma
menor variacdo nos valores das métricas.

A Figura3jmostra para cada modelo de aprendizagem de maquina, a distribui¢do dos pardmetros internos para
predicdo de TOC. Pode-se observar que para o ELM o « varia entre aproximadamente 0,5 e 3,0, n€ de neurdnios em
torno de 80 e 140 e a funcdo de ativagcdo que foi escolhida na maioria das iteragdes foi tangente hiperbolica. Para o
KNN, o ntimero de vizinhos variou entre 7 e 11, o weight foi distance em 29 itera¢cdes. No caso do SVR, o C variou
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Figura 1: Boxplot para as métricas R%, RMSE, MAE, MSE e MARE.

Tabela 4: Média e Desvio Padrdo das Métricas na Classificacdo de Litologia - Conjunto de Treinamento

METODO | ACURACIA F1 RECALL KAPPA PRECISAO
ELM 0.951 (0.034) | 0.951 (0.035) | 0.951 (0.034) | 0.916 (0.060) | 0.953 (0.032)
KNN 1.000 (-) 1.000 (-) 1.000 (-) 1.000 (-) 1.000 (-)
SVM 0.940 (0.036) | 0.939 (0.037) | 0.940 (0.036) | 0.897 (0.063) | 0.943 (0.034)
XGB 0.996 (0.007) | 0.996 (0.007) | 0.996 (0.007) | 0.994 (0.013) | 0.996 (0.007)

Tabela 5: Média e Desvio Padrdo das Métricas na Classificacio de Litologia - Conjunto de Teste

METODO | ACURACIA F1 RECALL KAPPA PRECISAO
ELM 0.827 (0.055) | 0.802(0.064) | 0.827(0.055) | 0.683(0.095) | 0.835(0.065)
KNN 0.820 (0.042) | 0.820(0.043) | 0.820(0.042) | 0.683(0.073) | 0.830(0.039)
SVM 0.858(0.048) | 0.856(0.050) | 0.858(0.048) | 0.749(0.083) | 0.866(0.046)
XGB 0.941 (0.029) | 0.941(0.029) | 0.941(0.029) | 0.896(0.053) | 0.944(0.028)

Vetor, Rio Grande, vol.

35, no. 1, 18357, 2025



Aprendizado de Maquina e Algoritmo Genético para Predicido de TOC e Classifica¢do de Litologia Cabral et al.

Output = Sample Output = Sample Output = Sample
1.00 - 1.00 1.00
0.95 0.95 1 0.95
- o
0.90 + i ©.90 0.90 H 4
=) —
= 0.85 - ° =
3 0.85 - ° o 3 o.85 i
o =
=<
0.80
o.80 0.80
.75
0.75 .
0.75 1 o 0.75 4 °
— 0.70 o —
o —1 o
0.70 H 0.70 4
= = = o0 = = = (==} = = = [==]
o = > 2 ] = > 2 o = > 2
Estimator Estimator Estimator
Output = Sample Output = Sample

1.00 A 1.0
0.95 A
0.9 -
0.90 <
o 0.8

0.85

0.80 - 0.7 |

PRECISION
00
KAPPA
0

0.75 A
0.6
0.70 H

00

0.65

8
= = =
= = =

ELM
XGB
ELM
XGB

=
=
= > >
Estimator Estimator

Figura 2: Boxplot para as métricas Acurdcia, F1, Recall, Precision e Kappa .

de aproximadamente 0,5 a 2, o y entre 0,05 e 0,1. Para o XGB, o parametro learning rate variou de 0,02 e 0,055, a
profundidade maxima na maioria da iteracoes foi 2 e o nimero de estimadores de 90 a 250.

A Figura [d] apresenta para cada método, a distribuicdo dos parametros internos para classificacio de litologia.
Nota-se que para o ELM o « varia entre aproximadamente 1,9 e 5,8, n€ de neurdénios em torno de 100 e 130 e a fun-
cdo de ativacdo que foi escolhida na maioria das iteracées foi ReLU. Para o KNN, o numero de vizinhos 2 e 4 foram
escolhidos em 10 iteragdes cada, o weight foi distance em 29 iteragdes. No caso do SVM, o C variou de aproxima-
damente 10 a 300, o y entre 0 e 0,03. Para o XGB, o pardmetro learning rate variou de 0,03 e 0,07, a profundidade
maxima foi 3 em 9 iteracdes e o numero de estimadores de 150 a 250. Pode-se observar que para a classificagdo houve
mais esforco tendo em vista os valores dos parametros mais altos em grande parte dos casos.

A Tabela [fl mostra os melhores modelos encontrados ap6s 30 execugdes independentes na predicdo de TOC e
seus resultados no conjunto de teste. Observa-se que o melhor modelo foi referente a0 XGB com R? = 0.661 e RMSE
=0.106.

Tabela 6: Melhores Modelos (TOC) - Conjunto de Teste

Modelo Melhores Parimetros MSE | RMSE | MAE | MARE R?
ELM no. neurons = 122, activation function = tanh
alpha=2.67 0.021 0.145 0.124 0.467 0.367
KNN no. neighbors = 6, weight=distance 0.017 | 0.129 | 0.100 | 0.365 | 0.500
SVR C =0.245, gamma = 0.077 0.018 0.133 0.101 0.413 0.467
XGB no. estimators=299, max. depth = 3
learning rate = 0.020 0.011 0.106 0.074 0.278 0.661

A Tabela [7] mostra os melhores modelos encontrados apos 30 execucdes independentes na na classificacdo de
litologia e seus resultados no conjunto de teste. Observa-se que o melhor modelo foi referente ao XGB com acurécia
= 1.000 e Kappa = 1.000, mostrando que o nivel de concordancia é perfeito.
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Figura 3: Distribuicdo dos pardmetros para ELM, KNN, SVR e XGB em 30 execucoes independentes - Predi¢cdo TOC.

5 Conclusoes

Este estudo avaliou o uso de algoritmo genético combinado com quatro modelos de aprendizado de maquinas para
um problema de previsdo de TOC e classificagio de litologia com dados coletados no campo de Marlim, bacia de
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Campos.

A abordagem consistiu em formular o problema de selecio de modelos como um problema de otimizacio bus-
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Tabela 7: Melhores Modelos (Litologia) - Conjunto de Teste

Modelo Melhores Pardmetros Acuréicia F1 Precisdo | Recall | Kappa
ELM no. neurons = 144,
activation function = relu,

alpha=7.68 0.935 0.921 0.941 0.935 0.859

KNN no. neighbors = 4, weight=distance 0.903 0.901 0.907 0.903 0.828

SvC C =176.198, gamma = 0.968 0.968 0.133 0.970 0.968 0.968
XGB no. estimators=198, max. depth =2

learning rate = 0.034 1.000 1.000 1.000 1.000 1.000

cando regides de minimos/maximos locais e um hiperespaco de pardmetros considerando o erro quadratico mé-
dio/acurécia como func¢do objetivo. Ao final do processo de otimizagao, foram calculadas as médias de desempenho
para comparar a eficicia dos algoritmos populacionais no ajuste dos parametros do modelo de aprendizado de ma-
quina.

O método que obteve melhor resultado foi o XGB tanto para predicido de TOC quanto para classificagéo de litolo-
gia, mostrando ser uma possibilidade para automatizar tais processos e auxiliar na tomada de decisdo de especialistas,
reduzindo tempo e custo.
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