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Resumo

O petróleo e o gás são as principais fontes de energia primária no mundo. A partir desses recursos, obtêm-se deriva-
dos e petroquímicos que alimentam a produção de energia, serviços e diversos produtos. Entre as etapas cruciais da
produção de petróleo estão a classificação dos reservatórios, a perfuração e a análise dos dados geológicos para de-
terminar a viabilidade da extração. No entanto, esses processos costumam ser feitos manualmente por especialistas
ou por métodos que são caros, imprecisos e demorados. Neste contexto, este trabalho tem o objetivo de classificar
litologias e prever a taxa de carbono orgânico total pormeio da aplicação de técnicas de aprendizado demáquina, em-
pregando algoritmo genético com busca exaustiva para otimização dosmétodos de regressão/classificação. A base de
dados utilizada é referente a um poço do Campo Marlim, Bacia de Campos. Os resultados mostram que o Extreme
Gradient Boosting (XGB) obteve bom desempenho nos experimentos realizados, com média de acurácia=0,941 e
RMSE = 0,150 no conjunto de testes, sendo uma alternativa para auxiliar especialistas na tarefa de classificação de
litologias e predição de taxa de carbono total.
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Abstract

Oil and gas are the main sources of primary energy in the world. From these resources, derivatives and petroche-
micals are obtained that feed the production of energy, services and various products. Among the crucial stages of
oil production are the classification of reservoirs, drilling and analysis of geological data to determine the feasibility
of extraction. However, these processes are often done manually by experts or using methods that are expensive,
inaccurate and time-consuming. In this context, this work aims to classify lithologies and predict the total organic
carbon rate through the application of machine learning techniques, employing a genetic algorithmwith exhaustive
search to optimize regression/classification methods. The database used refers to a well in Campo Marlim, Campos
Basin. The results show that Extreme Gradient Boosting (XGB) performed well in the experiments carried out, with
average accuracy = 0.941 and RMSE = 0.150 in the test set, being an alternative to assist specialists in the task of
lithology classification and rate prediction. total carbon.

⭐Este artigo é uma versão estendida do trabalho apresentado no XXVII ENMC Encontro Nacional de Modelagem Computacional e XV ECTM
Encontro de Ciência e Tecnologia de Materiais, ocorridos em Ilhéus – BA, de 1 a 4 de outubro de 2024.
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1 Introdução
Opetróleo é umamistura complexa de hidrocarbonetos, contendo tambémpequenas quantidades de outros compos-
tos químicos [1]. Analisar esses componentes, entender suas interações e avaliar seu impacto na produção são etapas
cruciais para determinar o potencial de produção de um poço [2]. Neste contexto, existe um grupo de áreas dentro da
engenharia de petróleo dedicadas à utilização de ferramentas damatemática aplicada para que se obtenha ummaior
conhecimento das propriedades e das condições de escoamento nos reservatórios portadores de hidrocarbonetos [3].
Deve-se destacar, ainda, o papel fundamental das aplicações computacionais na construção de ferramentas úteis nos
estudos de reservatórios [4].

Um aspecto crucial na caracterização de um reservatório é a litologia. A partir dos perfis petrofísicos coletados
nos poços, é possível compreender o comportamento de um campo específico. A descrição das rochas, baseada em
características como cor, composição mineralógica e tamanho dos grãos, é organizada em classes litológicas. Com
esse entendimento, é possível avaliar o potencial e a heterogeneidade do reservatório [5].

A análise manual de litologias de perfil de poço é um procedimento trabalhoso que envolve um tempo gasto
considerável por um especialista competente, mesmo quando auxiliado por métodos gráficos [6]. O problema torna-
se particularmente desafiador à medida que aumenta o número de perfis de poços a serem avaliados. Portanto, seria
útil automatizar o processo de caracterização de reservatórios.

Na avaliação de rochas geradoras de petróleo, o Carbono Orgânico Total (TOC) é um indicador-chave para a de-
terminação do teor de hidrocarbonetos. A previsão precisa do TOC é essencial para a exploração e o desenvolvimento
bem-sucedido dos recursos de petróleo e gás [7].

O TOC é uma maneira para qualificar a capacidade de geração da rocha geradora. A determinação precisa do
TOC emamostras de solo e sedimentos é fundamental para a indústria de exploração de hidrocarbonetos, fornecendo
informações essenciais sobre a presença e qualidade da matéria orgânica.

Os métodos mais utilizados para calcular o TOC são análises geoquímicas, realizadas em laboratório. Para isso,
tornam-se necessários fragmentos de rocha oumesmo testemunhos, aumentando os custos de exploração. Pesquisas
que apresentam abordagens para estimar o TOC a partir de dados principais têm sido cada vez mais relatadas na
literatura.

Diante do exposto, este trabalho busca aplicar métodos de aprendizado de máquina para classificar litologia e
realizar a predição de TOC. Dessa forma, será possível auxiliar o processo de caracterização de reservatórios de
petróleo diminuindo o tempo gasto nas análises.

A definição dos parâmetros ideais para maximizar o desempenho dos métodos de aprendizado de máquina é
um problema comum. Para resolver essa questão, o Algoritmo Genético será empregado para otimizar os modelos,
buscando encontrar os melhores parâmetros e melhorar a qualidade das estimativas.

O artigo está dividido da seguinte maneira: a Seção 2 trata dos trabalhos relacionados, a Seção 3 apresenta os
dados utilizados e a metodologia empregada, a Seção 4 explora os resultados e a Seção 5 fornece a conclusão.

2 TRABALHOS RELACIONADOS
A previsão do Carbono Orgânico Total (TOC) e classificação de litologias são fundamentais para avaliar a capacidade
de geração de hidrocarbonetos das rochas geradoras. Na literatura, diversas abordagens têm sido exploradas para
tornais tais processos mais rápidos e com melhores desempenhos.

Yang et al. [8] aplicaram técnicas de transformada wavelet e agrupamento K-means modificado para classifi-
car rochas metamórficas do Principal Furo Científico Continental Chinês (CCSD-MH). Os resultados mostraram
maior precisão na identificação estratigráfica, destacando a eficácia dessa abordagem para melhorar a classificação
de rochas metamórficas.

Elkatatny [9] propôs ummétodo eficiente para estimar o teor de carbono orgânico total em reservatórios de folhe-
lho utilizando registros petrofísicos. Com um modelo SaDE-ANN otimizado, alcançou alta precisão na predição do
TOC usando dados como raios gama, tempo de compressão, resistividade e densidade bulk. A nova correlação empí-
rica desenvolvida superou significativamente modelos anteriores, reduzindo os erros percentuais absolutos médios
em até 67%.

Xie et al. [10] avaliaram cinco métodos de aprendizado de máquina (Naïve Bayes, Máquina de Vetores de Su-
porte, RedeNeural Artificial, Floresta Aleatória e Gradient Tree Boosting) usando dados dos campos de gásDaniudui
e Hangjinqi. O estudo utilizou otimização de hiperparâmetros e validação cruzada para determinar o melhor mo-
delo. Os resultados indicam que os métodos de ensemble apresentam menor erro de previsão e maior precisão na
classificação da litologia, mesmo em classes de arenito.
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Saporetti et al. [11] utilizaram seis métodos de aprendizado de máquina com técnicas de balanceamento de
dados para classificar dados da Bacia de South Provence. Os resultados indicam que o balanceamento melhorou
o desempenho dos classificadores e a seleção de modelos otimizou os parâmetros. A ferramenta computacional
desenvolvida ajuda na identificação das heterogeneidades dos reservatórios.

O estudo de Asante-Okyere et al. [12] introduziu um modelo avançado de rede neural convolucional (CNN),
o MWL-CNN, que integra dados de composição mineral do xisto e registros geofísicos de poços para previsão de
TOC. Os resultados mostraram que a inclusão da composição mineral, especialmente componentes como feldspato
e pirita, melhorou significativamente a precisão do modelo em comparação com abordagens baseadas apenas em
registros de poços (WL-CNN).

Saporetti et al. [13] destacaram a importância da análise de TOC na exploração de intervalos geradores de hi-
drocarbonetos. Este estudo previu TOC utilizando uma abordagem híbrida, integrando modelos de aprendizado de
máquina com o Algoritmo de Otimização Grey Wolf para ajustar parâmetros. A metodologia, avaliada com amos-
tras do campo de gás de xisto YuDongNan, demonstrou que métodos de aprendizado de máquina assistidos por
algoritmos evolutivos podem estimar TOC com precisão.

Silva et al. [14] propuseram uma abordagem para a previsão de TOC utilizando redes neurais convolucionais
(CNNs) otimizadas por evolução diferencial. O estudo utilizou parâmetros selecionados por metaheurísticas e va-
lidação cruzada para melhorar a flexibilidade do modelo. A abordagem foi validada com amostras de várias bacias
sedimentares, demonstrando o potencial das CNNs para prever concentrações de TOCdemaneira eficiente e precisa.

Percebe-se que aplicar métodos de aprendizagem de máquina é algo promissor e empregar meta-heurística vai
auxiliar a encontrar o melhor modelo, possibilitando realizar a previsão/classificação com ummelhor desempenho.
Então, objetiva-se avaliar o uso do Algoritmo Genético com busca exaustiva para encontrar os melhores métodos
para classificar litologias e prever a taxa de Carbono Orgânico Total de um poço do Campo de Marlim.

3 MATERIAIS EMÉTODOS

3.1 Bases de Dados
O foco deste estudo é a área do Campo deMarlim, situado na região nordeste da Bacia de Campos, aproximadamente
110 km a leste do Cabo de São Tomé, na costa do Rio de Janeiro, com uma extensão total de 257, 6𝑘𝑚2.

Os dados petrofísicos de poços são disponibilizados pela Agência Nacional do Petróleo, Gás Natural e Biocom-
bustíveis do Brasil (ANP), possuindo informações de 309 amostras e 12 características, que são Raios Gama (GR),
Neutrônico (NPHI), Sônico (DT), Diâmetro de perfuração (CALI), Perfil de densidade (DRHO), Densidade (RHOB),
Fator fotoelétrico (PEF), Caliper (CALI), Resistividade Profunda (ILD), Resistividade média (ILM), Resistividade
microesférica (SFLA e SFLU) e Potencial Espontâneo (SP) além dos valores de TOC e as classes litológicas que são
divididas em Arenito, Marga e Argilito.

3.2 Validação Cruzada
A validação cruzada k-fold (k-fold cross-validation) é um procedimento de divisão dos objetos nos conjuntos de trei-
namento e teste, em que cada objeto é utilizado uma única vez em um dos k conjuntos de teste e (k-1) vezes em um
dos k conjuntos de treinamento [15]. Esse processo é repetido k vezes, utilizando em cada ciclo uma partição dife-
rente para o teste, sendo o desempenho final dado pela média dos desempenhos observados sobre cada subconjunto
de teste [16].

3.3 Métodos
Para o processo demodelagem computacional dos dados foram aplicados os seguintes algoritmos supervisionados de
Aprendizado de Máquina que podem ser utilizados tanto em regressão como em classificação: K-Nearest Neighbors
(KNN), Extreme Learning Machine (ELM), Support Vector Machines (SVM) e Extreme Gradient Boosting (XGB).

OELMéuma redeneural artificial feedforward comapenas uma camada oculta, compesos de conexão de entrada
escolhidos aleatoriamente [17, 18]. A saída do ELM é descrita como

𝑦̂ =
𝐿∑

𝑖=1
𝛽𝑖𝐺 (𝛼𝑖x + 𝑏𝑖) (1)

onde {(𝑥𝑖 , 𝑦𝑖), 𝑥𝑖 ∈ ℜ𝑛, 𝑦𝑖 ∈ ℜ1, 𝑖 = 1, 2,⋯ ,𝑁} são as amostras de treinamento, 𝐿 o número de neurônios ocultos,
{𝛽𝑖 , 𝑖 = 1, 2,⋯ ,𝑁} os pesos de saída, 𝐺 a função de ativação, {𝛼𝑖 , 𝑖 = 1, 2,⋯ ,𝑁} é o vetor de pesos, 𝑏𝑖 é o bias para o
nó oculto 𝑖, e 𝑦̂ é a saída predita.
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A Eq. (1) pode ser estruturada como H𝛽 = T, onde 𝐻𝑖𝑗 = 𝐺(𝛼𝑗 , 𝑏𝑗 , x𝑖) e 𝑇𝑖 = 𝑦𝑖 . A função objetivo qua-
drática

∑𝑁
𝑖=1 ∥ 𝑦̂𝑖 − 𝑦𝑖 ∥= 0 é minimizada usando mínimos quadrados, e o vetor de peso de saída é dado por

𝛽 =
(
H𝑇H

)−1
H𝑇T.

Máquina de Vetores de Suporte (SVM) é um modelo de aprendizado de máquina capaz de fazer classificações
lineares e não lineares [19, 20] e regressão [21]. Omodelo linear do classificador SVMprediz a classe de uma instância
nova x calculando a função de decisãow𝑇x + 𝑏, onde 𝑏 é o bias ew é o vetor de pesos das características. Assim, a
saída é classificada de acordo com a Eq. (2)

𝑦̂ = { 0 , 𝑠𝑒 w𝑇x < 0
1 , 𝑠𝑒 w𝑇x ≥ 0 . (2)

Portanto, treinar umclassificador SVM linear significa encontrar os valores dew e 𝑏 que fazemcomque amargem
ao redor da fronteira de decisão seja a mais ampla possível, ao passo que a margem seja rígida (evita as violações de
margem) ou seja suave (restringindo as violações de margem), sendo controlado pelo parâmetro C na Eq. (3). Para
classificação SVM não linear é empregado o truque do kernel. Já para regressão SVM, em vez de tentar ajustar a
maior largura de margem possível entre as duas classes enquanto se restringe as violações de margem, tenta ajustar
o maior número possível de instâncias entre as margens enquanto restringe a margem de violações (ou seja, das
instâncias fora da “rua” entre as margens).

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎 1
2
w𝑇w + 𝐶

∑𝑚
𝑖=1 𝜁

𝑖

𝑠𝑢𝑗𝑒𝑖𝑡𝑎 𝑎 𝑡(𝑖)(w𝑇x(𝑖) + 𝑏) ≥ 1 − 𝜁𝑖 𝑒𝑚 𝜁𝑖 ≥ 0, 𝑖 = 1,⋯ ,𝑚
(3)

onde 𝜁(𝑖) ≥ 0 é uma variável que calcula o quanto a instância 𝑖 pode violar a margem, e o hiperparâmetro C permite
definir a troca entre um classificador linear com margem rígida (𝐶 = 0) e um classificador linear de margem suave
(𝐶 = 1). Importante ressaltar que, como o algoritmo SVM usa internamente o cálculo de distância, deve ser feito o
escalonamento dos atributos preditivos no pré-processamento.

KNN foi desenvolvido pela primeira vez por Fix e Hodges [22], e posteriormente expandido por Cover e Hart [23]
é um algoritmo baseado em proximidade que usa distância euclidiana para avaliar a proximidade entre cada par de
objetos, assumindo que quanto menor for a distância entre dois objetos mais semelhantes eles são [15]. Escolhe-
se um objeto aleatoriamente, a partir disso analisa a classe dos K vizinhos mais próximos, a classe que aparece na
maioria dos K vizinhos é atribuída ao objeto. O KNN apesar de ser um método simples é propenso ao overfitting
pelos seguintes fatores: é sensível ao ruído nos dados de treinamento, podendo afetar a predição em novas amostras,
em espaços de alta dimensionalidade, a distância entre os pontos se torna menos significativa podendo levar a uma
percepção errada de similaridade entre pontos e se os dados de treinamento são muito desbalanceados ou possuem
uma distribuição irregular, o KNN pode se ajustar excessivamente a essas características específicas dos dados de
treinamento, prejudicando sua capacidade de generalização [24].

O algoritmo XGB desenvolvido por Chen e Guestrin [25] é do tipo ensemble, combinando modelos sequenci-
almente, de modo que é atribuída uma maior importância ao aprendizado de objetos que o modelo anterior não
conseguiu apresentar uma boa predição [26]. É baseado no princípio do gradiente descendente, um algoritmo de
otimização onde novas árvores são geradas com base nas anteriores, visando reduzir a função objetivo dada pela
Eq. (4) a um menor valor possível [27].

𝑂𝑏𝑗 =
𝑇∑

𝑗=1
[𝐺𝑗𝜔𝑗 +

1
2
(
𝐻𝑗 + 𝜆

)
𝜔2𝑗] + 𝛾𝑇 (4)

onde 𝑇 é o número de folhas, 𝐺 é a soma do gradiente da função de perda, 𝐻 é a soma do Hessiano da função de
perda, 𝜔 é o vetor das pontuações (scores) nas folhas, 𝜆 e 𝛾 representam os coeficientes de penalidade.

Na abordagem ensemble do tipo boosting, os modelos são induzidos sequencialmente (a saída gerada por um
modelo é recebida como entrada por outro modelo). Para a indução de cada novo modelo, é atribuída uma maior
importância ao aprendizado de objetos que o modelo anterior não conseguiu apresentar uma boa predição [26]. As-
sim, nomodelo XGB as árvores de decisão são adicionadas sequencialmente como aprendizes fracos (weak learners)
produzindo um aprendiz forte (strong learner), sendo cada nova árvore treinada para corrigir os erros cometidos
usando a função objetivo dada pela Eq. (4).

3.4 Otimização evolutiva sobre hiperparâmetros
O GASearchCV é uma otimização evolutiva sobre hiperparâmetros, tendo em vista os scores de validação cruzada,
que melhora a precisão da previsão do algoritmo genético usando testes aleatórios de seu hiperparâmetro inicial
[28]. Pode ser usado tanto para problemas de regressão quanto de classificação. A vantagem da implementação
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usando busca em grade dos hiperparâmetros é que consegue-se definir quais hiperparâmetros são inteiros, quais são
categóricos e quais são reais de forma que a variação é discreta ou contínua de acordo com o tipo. Dessa, forma
não precisa fazer a busca contínua em todos os parâmetros e realizar uma transformação para inteiro e posterior
atribuição a dados categóricos.

Ométodo de validação cruzada utilizado foi o K-Fold com k=5, tamanho da população = 20, nº de gerações = 30,
probabilidade de crossover = 0,9, probabilidade de mutação = 0,08, scoring = acurácia para classificação de litologia
e scoring = raiz do erro quadrático médio para predição de TOC. A descrição dos modelos com os hiperparâmetros
que foram otimizados e as respectivas variações encontra-se na Tabela 1.

Tabela 1: Descrição dos modelos

Método Parâmetros Descrição Configuração
ELM activation_func Função de ativação. [identity, logistic, tanh, reLu]

n_hidden Número de neurônios. [20, 150]
alpha Força de regularização. [0.001, 10]

KNN n_neighbors Número de vizinhos mais próximos. [2, 30]
weights Função de peso usada na previsão. [uniform, distance]

SVM C Ajusta a penalidade dos erros na [20, 200]
regressão/classificação.

gamma Define até onde chega a [0.001, 0.1]
influência de um único exemplo

de treinamento.
XGB n_estimators Número de árvores na floresta. [5, 300]

max_depth Profundidade máxima. [2, 10]
learning_rate Taxa de aprendizagem. [0.001, 0.1]

3.5 Métricas
Para a avaliação do desempenho dos métodos utilizados para a predição de TOC, foram utilizadas as seguintes mé-
tricas: o coeficiente de determinação (R2), o erro médio absoluto(𝑀𝐴𝐸), o erro quadrático médio (MSE), raiz do
erro quadrático médio (RMSE) e o erro relativo absoluto médio (MARE) . Onde 𝑦𝑖 representa os valores medidos da
variável dependente (𝑇𝑂𝐶), 𝑦̂𝑖 representa os valores preditos de 𝑇𝑂𝐶, 𝑦̄𝑖 o valor médio de 𝑇𝑂𝐶 e 𝑛 o tamanho da
amostra.

• 𝑅2 =
𝑁∑

𝑖=1
(𝑦𝑖 − 𝑦̂𝑖)2∕

𝑁∑

𝑖=1
(𝑦𝑖 − 𝑦̄)

• MAE = 1
𝑁

𝑁∑

𝑖=1
|𝑦𝑖 − 𝑦̂|

• MSE = 1
𝑁

𝑁∑

𝑖=1
(𝑦𝑖 − 𝑦̂)2

• RMSE =

√
√√√√ 1

𝑁

𝑁∑

𝑖=1
(𝑦𝑖 − 𝑦̂)2

• MARE = 1
𝑁

𝑁∑

𝑖=1

|||||||
𝑦𝑖 − 𝑦̂
𝑦𝑖

|||||||

Para a classificação de litologia foram empregadas as seguintes métricas Acurácia (AC), F1, Recall (Re), Kappa e
Precisão (Pr).

• 𝐴𝐶 = 1
𝑁
∑𝑁

𝑖=1 𝐼(𝑓(𝑥𝑖) = 𝑦𝑖)
onde, 𝑓(𝑥𝑖) é a classe predita as amostras de teste e 𝑦𝑖 é a classe verdadeira dessas amostras. Considerando que
𝐼(𝑡𝑟𝑢𝑒) = 1 e 𝐼(𝑓𝑎𝑙𝑠𝑒) = 0.

• 𝐹1 = 2𝑇𝑃
2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

• 𝑅𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁
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Tabela 2: Média e Desvio Padrão das Métricas na Predição de TOC - Conjunto de Treinamento

Método R2 RMSE MAE MARE MSE
ELM 0.238 (0.042) 0.175 (0.009) 0.136 (0.007) 0.477 (0.024) 0.031 (0.003)
KNN 0.950 (0.151) 0.014 (0.043) 0.010 (0.031) 0.035 (0.106) 0.002 (0.006)
SVR 0.673 (0.081) 0.114 (0.017) 0.067 (0.016) 0.242 (0.055) 0.013 (0.004)
XGB 0.754 (0.107) 0.096 (0.028) 0.065 (0.018) 0.230 (0.065) 0.010 (0.004)

Tabela 3: Média e Desvio Padrão das Métricas na Predição de TOC - Conjunto de Teste

Método R2 RMSE MAE MARE MSE
ELM 0.139 (0.121) 0.186 (0.029) 0.145 (0.013) 0.510 (0.054) 0.035 (0.012)
KNN 0.294 (0.138) 0.167 (0.026) 0.123 (0.011) 0.414 (0.039) 0.029 (0.009)
SVR 0.329 (0.110) 0.164 (0.028) 0.117 (0.012) 0.421 (0.040) 0.028 (0.010)
XGB 0.422 (0.108) 0.150 (0.025) 0.103 (0.012) 0.353 (0.038) 0.023 (0.008)

• 𝑃𝑟 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑇𝑃, 𝐹𝑁 e 𝐹𝑃 são o número de verdadeiros positivos negativos e falsos positivos.

• 𝐾𝐴𝑃𝑃𝐴 =
𝑃𝑜 − 𝑃𝐸
1 − 𝑃𝐸

– 𝑃𝑜 =
nº de concordâncias

nº de concordâncias + nº discordâncias
– 𝑃𝐸 =

∑𝑁
𝑖=1(𝑝𝑖1 × 𝑝𝑖2)

onde 𝑁 é o número de categorias, 𝑖 é o índice de categorias, 𝑝𝑖1 é a ocorrência da categoria de proporção
𝑖 para o avaliador 1, 𝑝𝑖2 é a ocorrência da categoria de proporção 𝑖 para o avaliador 2.

4 RESULTADOS E DISCUSSÃO
Para a avaliação do desempenho dosmétodos utilizados para a predição de TOC, foram utilizadas as seguintes métri-
cas: o coeficiente de determinação (R2), o erro médio absoluto (MAE), o erro quadrático médio (MSE), raiz do erro
quadráticomédio (RMSE) e o erro relativo absolutomédio (MARE). As Tabelas 2 e 3 apresentam os desempenhos do
métodos utilizados na predição de TOC para o conjunto de treinamento e teste, respectivamente. Pode-se observar
que o KNN obteve o melhor resultado no conjunto de treinamento (R2 = 0.950, RMSE = 0.014), seguido do XGB (R2
= 0.754, RMSE = 0.096). Porém no conjunto de teste o XGB (R2 = 0.422, RMSE = 0.150) foi o método com melhor
resultado e o KNN (R2 = 0.294, RMSE = 0.167) o terceiro com melhor resultado. Este resultado sugere que houve
um overfitting com o KNN, pois o desempenho dele no conjunto de treinamento foi muito superior ao de teste e não
se destacou comparando aos outros métodos. Isso indica que o aprendizado do KNN ficou limitado ao conjunto de
treinamento, não tendo a capacidade de aplicar o aprendizado em amostras desconhecidas.

A Figura 1 exibe os boxplots das métricas no conjunto de teste na predição de TOC nas 30 execuções realiza-
das. Nota-se que o XGB apresentou melhor desempenho se comparado aos outros métodos além de ter uma menor
variação nos valores das métricas.

Para a classificação de litologia foram empregadas as seguintes métricas Acurácia (AC), F1, Recall (Re), Kappa
e Precisão (Pr). As Tabelas 4 e 5 mostram os desempenhos do métodos utilizados na classificação de litologia para
o conjunto de treinamento e teste, respectivamente. Nota-se que um comportamento similar a predição de TOC
ocorre, pelo fato de se tratar dos mesmo dados de entrada porém com variável de saída diferente. O KNN obteve
melhor resultado no conjunto de treino e o XGB no de teste e nesse caso também o indicativo de overfitting.

A Figura 2 exibe os boxplots das métricas no conjunto de teste na classificação de litologia nas 30 execuções
realizadas. Nota-se que o XGB apresentou melhor desempenho se comparado aos outros métodos além de ter uma
menor variação nos valores das métricas.

A Figura 3 mostra para cada modelo de aprendizagem de máquina, a distribuição dos parâmetros internos para
predição de TOC. Pode-se observar que para o ELM o 𝛼 varia entre aproximadamente 0,5 e 3,0, nℇ de neurônios em
torno de 80 e 140 e a função de ativação que foi escolhida na maioria das iterações foi tangente hiperbólica. Para o
KNN, o número de vizinhos variou entre 7 e 11, o weight foi distance em 29 iterações. No caso do SVR, o C variou
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Figura 1: Boxplot para as métricas R2, RMSE, MAE, MSE e MARE.

Tabela 4: Média e Desvio Padrão das Métricas na Classificação de Litologia - Conjunto de Treinamento

MÉTODO ACURÁCIA F1 RECALL KAPPA PRECISÃO
ELM 0.951 (0.034) 0.951 (0.035) 0.951 (0.034) 0.916 (0.060) 0.953 (0.032)
KNN 1.000 (–) 1.000 (–) 1.000 (–) 1.000 (–) 1.000 (–)
SVM 0.940 (0.036) 0.939 (0.037) 0.940 (0.036) 0.897 (0.063) 0.943 (0.034)
XGB 0.996 (0.007) 0.996 (0.007) 0.996 (0.007) 0.994 (0.013) 0.996 (0.007)

Tabela 5: Média e Desvio Padrão das Métricas na Classificação de Litologia - Conjunto de Teste

MÉTODO ACURÁCIA F1 RECALL KAPPA PRECISÃO
ELM 0.827 (0.055) 0.802 (0.064) 0.827 (0.055) 0.683 (0.095) 0.835 (0.065)
KNN 0.820 (0.042) 0.820 (0.043) 0.820 (0.042) 0.683 (0.073) 0.830 (0.039)
SVM 0.858 (0.048) 0.856 (0.050) 0.858 (0.048) 0.749 (0.083) 0.866 (0.046)
XGB 0.941 (0.029) 0.941 (0.029) 0.941 (0.029) 0.896 (0.053) 0.944 (0.028)
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Figura 2: Boxplot para as métricas Acurácia, F1, Recall, Precision e Kappa .

de aproximadamente 0,5 a 2, o 𝛾 entre 0,05 e 0,1. Para o XGB, o parâmetro learning rate variou de 0,02 e 0,055, a
profundidade máxima na maioria da iterações foi 2 e o número de estimadores de 90 a 250.

A Figura 4 apresenta para cada método, a distribuição dos parâmetros internos para classificação de litologia.
Nota-se que para o ELM o 𝛼 varia entre aproximadamente 1,9 e 5,8, nℇ de neurônios em torno de 100 e 130 e a fun-
ção de ativação que foi escolhida na maioria das iterações foi ReLU. Para o KNN, o número de vizinhos 2 e 4 foram
escolhidos em 10 iterações cada, o weight foi distance em 29 iterações. No caso do SVM, o C variou de aproxima-
damente 10 a 300, o 𝛾 entre 0 e 0,03. Para o XGB, o parâmetro learning rate variou de 0,03 e 0,07, a profundidade
máxima foi 3 em 9 iterações e o número de estimadores de 150 a 250. Pode-se observar que para a classificação houve
mais esforço tendo em vista os valores dos parâmetros mais altos em grande parte dos casos.

A Tabela 6 mostra os melhores modelos encontrados após 30 execuções independentes na predição de TOC e
seus resultados no conjunto de teste. Observa-se que o melhor modelo foi referente ao XGB com R2 = 0.661 e RMSE
= 0.106.

Tabela 6: Melhores Modelos (TOC) - Conjunto de Teste

Modelo Melhores Parâmetros MSE RMSE MAE MARE R2

ELM no. neurons = 122, activation function = tanh
alpha=2.67 0.021 0.145 0.124 0.467 0.367

KNN no. neighbors = 6, weight=distance 0.017 0.129 0.100 0.365 0.500
SVR C = 0.245, gamma = 0.077 0.018 0.133 0.101 0.413 0.467
XGB no. estimators=299, max. depth = 3

learning rate = 0.020 0.011 0.106 0.074 0.278 0.661

A Tabela 7 mostra os melhores modelos encontrados após 30 execuções independentes na na classificação de
litologia e seus resultados no conjunto de teste. Observa-se que o melhor modelo foi referente ao XGB com acurácia
= 1.000 e Kappa = 1.000, mostrando que o nível de concordância é perfeito.
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Figura 3: Distribuição dos parâmetros para ELM, KNN, SVR e XGB em 30 execuções independentes - Predição TOC.

5 Conclusões
Este estudo avaliou o uso de algoritmo genético combinado com quatro modelos de aprendizado de máquinas para
um problema de previsão de TOC e classificação de litologia com dados coletados no campo de Marlim, bacia de
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Figura 4: Distribuição dos parâmetros para ELM, KNN, SVR e XGB em 30 execuções independentes - Classificação
Litologia.

Campos.
A abordagem consistiu em formular o problema de seleção de modelos como um problema de otimização bus-
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Tabela 7: Melhores Modelos (Litologia) - Conjunto de Teste

Modelo Melhores Parâmetros Acurácia F1 Precisão Recall Kappa
ELM no. neurons = 144,

activation function = relu,
alpha=7.68 0.935 0.921 0.941 0.935 0.859

KNN no. neighbors = 4, weight=distance 0.903 0.901 0.907 0.903 0.828
SVC C = 176.198, gamma = 0.968 0.968 0.133 0.970 0.968 0.968
XGB no. estimators=198, max. depth = 2

learning rate = 0.034 1.000 1.000 1.000 1.000 1.000

cando regiões de mínimos/máximos locais e um hiperespaço de parâmetros considerando o erro quadrático mé-
dio/acurácia como função objetivo. Ao final do processo de otimização, foram calculadas as médias de desempenho
para comparar a eficácia dos algoritmos populacionais no ajuste dos parâmetros do modelo de aprendizado de má-
quina.

Ométodo que obteve melhor resultado foi o XGB tanto para predição de TOC quanto para classificação de litolo-
gia,mostrando ser umapossibilidade para automatizar tais processos e auxiliar na tomada de decisão de especialistas,
reduzindo tempo e custo.
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