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Resumo

O monitoramento de integridade estrutural (SHM, do inglés Structural Health Monitoring) tem como objetivo ga-
rantir a seguranca e o funcionamento das estruturas. Nos ultimos anos, diversas técnicas baseadas em aprendizado
de maquina tém sido utilizadas para esse fim. Dentre elas, destacam-se os autocodificadores (AE, do inglés Autoen-
coder), que sdo modelos capazes de extrair caracteristicas a partir de dados de vibragao, reduzindo a sua dimensio-
nalidade, constituindo-se como ferramentas eficazes para aplicacdes de SHM. Este trabalho investiga a eficicia de
quatro metodologias baseadas em autocodificadores, combinadas a uma ferramenta estatistica para detectar e quan-
tificar mudancas estruturais em trés diferentes estruturas. Os sinais de vibragdo das estruturas sdo utilizados como
dados de entrada e os valores da camada latente dos autocodificadores como pardmetros no teste T2 de Hotelling
para avaliar mudancas estruturais. Observou-se nos resultados obtidos que o modelo de autocodificador de melhor
desempenho, Variacional AE — T2, supera os outros na identificacio e quantificacido das mudangas estruturais. Em-
bora os modelos AE, AE Esparso e AE Convolucional tenham apresentado limitacdes quanto a quantificacio das
alteracgdes, eles apresentaram desempenho relevante para a detec¢do de anomalias.
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Abstract

Structural Health Monitoring (SHM) aims to ensure the safety and functionality of structures. In recent years, va-
rious machine learning techniques have been employed for this purpose. Among them, autoencoders (AE) stand
out as models capable of extracting features from vibration data, reducing dimensionality and proving to be effective
tools for SHM applications. This work investigates the effectiveness of four methodologies based on autoencoders,
combined with a statistical tool to detect and quantify structural changes in three different structures. The vibration
signals from the structures are used as input data, and the values from the latent layer of the autoencoders are used
as parameters in the Hotelling T? test to evaluate structural changes. The results obtained indicate that the autoen-
coder model with the best performance, Variational AE — T2, outperforms the others in identifying and quantifying
structural changes. Although the AE, Sparse AE, and Convolutional AE models exhibited limitations regarding the
quantification of alterations, they showed relevant performance for anomaly detection.

*Este artigo ¢ uma versio estendida do trabalho apresentado no XXVII ENMC Encontro Nacional de Modelagem Computacional e XV ECTM
Encontro de Ciéncia e Tecnologia de Materiais, ocorridos em Ilhéus - BA, de 1 a 4 de outubro de 2024.
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1 Introducao

Dentre as principais preocupacoes dos engenheiros ao longo do ciclo de vida das construcdes, destacam-se o bom
funcionamento dos sistemas estruturais e a seguranga dos usudrios. Considerando-se que as inspe¢des humanas,
quando conduzidas visualmente, podem ser suscetiveis a imprecisdes e erros, o monitoramento de integridade estru-
tural (SHM, do inglés Structural Health Monitoring) tem surgido como uma abordagem potencial para a identificacio
precoce de falhas em estruturas [[I]]. Esta metodologia depende principalmente do uso de acelerdmetros conectados
as estruturas para registrar dados de vibragio ao longo do tempo. Com avancos significativos em aprendizado de
maquina (ML, do inglés Machine Learning) e Inteligéncia Artificial (IA), esses dados se tornaram néo apenas mais
precisos, mas também mais acessiveis, possibilitando sua aplicacdo generalizada [2]. Como resultado, sistemas de
SHM oferecem uma abordagem mais confidvel e econdmica para a manuteng¢do estrutural, permitindo a detecgio
remota de sinais de deterioraciio com base em limiares predefinidos, o que pode reduzir significativamente os custos
de reparo [3] [4].

Com os avangos computacionais, métodos que utilizam diretamente dados vibracionais brutos estio se tornando
mais dominantes [4] [5]]. Essas abordagens podem detectar alteragdes estruturais processando sinais adquiridos
da estrutura ao longo do tempo, extraindo caracteristicas relevantes e realizando classificacdes com custos compu-
tacionais relativamente baixos. Um autocodificador (AE, do inglés Autoencoder) ¢ um modelo de aprendizado nio
supervisionado projetado para reconstruir dados de entrada e reduzir a dimensionalidade. Ele comprime informa-
cOes em uma representacio latente e reconstroi os dados originais a partir desta forma reduzida. Composto por um
codificador e um decodificador, ele minimiza a diferenca entre a entrada e a saida reconstruida. Existem variagoes
especificas, como autocodificadores esparsos (SAEs, do inglés Sparse Autoencoder), que introduzem restri¢oes de
regularizagdo para forcar a rede a aprender representacoes mais eficientes; autocodificadores variacionais (VAEs,
do inglés Variational Autoencoder), que incorporam uma abordagem probabilistica para modelar a distribuicdo dos
dados; e autocodificadores convolucionais (CAEs, do inglés Convolutional Autoencoder), que sio adaptados para
processar dados de imagem capturando caracteristicas espaciais [6]].

Neste contexto, este artigo avalia comparativamente o desempenho de quatro diferentes autocodificadores (AE,
SAE, VAE e CAE) na identificacdo de alteracGes estruturais. Para avaliar a metodologia, trés estruturas diferentes
sdo consideradas: (i) um portico biengastado ensaiado no Laboratdrio de Imagens e Sinais da Universidade Federal
de Juiz de Fora (UFJF), submetido a cinco cenarios diferentes de danos [[7]; (ii) um pértico de aco de quatro andares
localizado no Laboratério de Engenharia Sismica da Universidade da Columbia Britanica (UBC), que sofreu dois
tipos de alteracdes - remocao de contraventamentos e afrouxamento de parafusos [8]; (iii) a Ponte Z24, que ligava
as cidades de Koppigen e Utzenstorf na Suica e que foi submetida a varios testes de danos progressivos simulando
situacoes reais de degradacio em diferentes condicées de temperatura para fins cientificos [9]. Para todas as apli-
cacdes, foi construido um indice baseado na estatistica Shewhart T Control Chart (estatistica Hotelling T?) [10]], que
foi calculada usando os dados da camada latente dos autocodificadores, permitindo a identificacdo e a quantificacio
de danos em todas as estruturas analisadas.

2 Metodologia

A metodologia proposta busca avaliar a capacidade dos AEs de separar, de maneira ndo supervisionada, sinais de
vibracdo pertencentes a diferentes comportamentos dindmicos estruturais. Isso é alcancado treinando o modelo
com apenas uma parte dos dados das estruturas intactas e, posteriormente, testando-o com os restantes. Durante
esse processo, 0 modelo compara cada sinal com a classe de referéncia, ou seja, estado de dano, derivando um erro
especifico de reconstrucio, aqui usada a métrica T? para essa avaliacdo, que aumenta gradualmente entre as classes,
mas permanece relativamente constante dentro de cada uma delas. Dessa forma, todos os dados sdo divididos em
trés conjuntos da seguinte forma:

» Fase de Treinamento: Nesta etapa, um conjunto de dados extraidos do estado ndo danificado da estrutura
¢ usado para treinar o modelo de autocodificador. Este conjunto de dados é chamado de conjunto de treina-
mento;

» Fase de Validacdo: Durante esta fase, outro conjunto de dados (de validacdo), também extraido do mesmo
estado estrutural da fase de treinamento, ¢ aplicado ao modelo treinado na fase anterior. O objetivo é verificar a
capacidade de classificar novos dados. Espera-se que o modelo resulte em valores T2 estatisticamente similares
para os conjuntos de treinamento e validagdo, uma vez que pertencem ao mesmo estado estrutural;
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» Fase de Monitoramento: Nesta fase, conjuntos de dados (de monitoramento) extraidos de outros casos estru-
turais, diferentes dos utilizados nas fases de treinamento e validacdo, sdo apresentados ao modelo. Espera-se
que sejam produzidos valores de T2 mais altos do que os obtidos nas fases anteriores, j4 que pertencem a um
estado estrutural diferente daquele usado para treinamento.

Para todas as estruturas analisadas, a Transformada Réapida de Fourier (FFT, do inglés Fast Fourier Transform)
dos sinais dindmicos estruturais foi utilizada como entrada para os modelos do autocodificador. Essa escolha foi
motivada pelo fato de que as compressdes e reconstrucgdes realizadas pelos AE foram mais precisas nesse dominio
em comparac¢io ao dominio temporal [11].

Para garantir a variabilidade estatistica dentro do conjunto de dados avaliado, utilizou-se de um esquema de
validacdo cruzada com 10 folds para cada estrutura, a fim de obter avaliagdes mais homogéneas e precisas. A ordem
dos dados dentro das classes também foi modificada aleatoriamente no inicio de cada repeticao, alterando-se, assim,
a porcdo e a sequéncia de dados de estrutura integra usados para treinamento e validagdo. Apds realizar a FFT sobre
os dados de aceleracgdo, todos os resultados foram padronizados usando a padronizagdo z-score.

Todos os modelos de AE dependem dos seguintes parametros e hiperparametros: taxa de aprendizado, nimero de
épocas, tamanho do lote (batch size), dimensao original, dimensao latente e algoritmo otimizador. No entanto, para
0 SAE, também € necessario definir o parametro de esparsidade 4; para o VAE, é utilizada a dimensao intermediaria;
para o CAE, como a camada latente nio é unidimensional, é preciso definir o nimero de filtros e seus tamanhos
para essa camada.

Os hiperparametros dos AEs foram selecionados utilizando o otimizador de parametros Optuna [12]. Esta é
uma ferramenta automatizada e eficiente de otimizagio que emprega técnicas de busca inteligente para encontrar
as melhores combinacdes de hiperpardmetros para um determinado modelo de aprendizado de maquina, a partir
de uma abordagem de busca e selecio baseada em amostragem eficiente. Para isso, basta que o usudrio insira in-
tervalos de busca para cada item a ser otimizado, os quais neste trabalho foram escolhidos com base em praticas
estabelecidas na literatura e experimentos preliminares [7] [I1] [14] [I5], além do objetivo da otimizacio.
Esses hiperparametros otimizados foram posteriormente utilizados para treinar os autocodificadores.

Todos os dados das fases de treinamento e validagdo das aplicagdes sdo compostos pelo cenario 1 (estrutura sem
dano). Apos o treinamento, validacdo e otimizacao, os resultados passam pela fase de monitoramento. Nessa fase, ha
reconstrucio dos sinais dos demais cenérios para, nesse momento, realizar o célculo usando a estatistica Hotelling T?.
Por fim, foi usado um limiar pré-fixado (UCL) acima dos 95% desses valores obtidos durante a fase de treinamento
para separar os dados com e sem dano.

3 Aplicacoes
3.1 Pértico Biengastado (Analise 1)

A primeira estrutura analisada trata-se de um portico biengastado (Figura[I)) ensaiado no Laboratorio de Imagem e
Sinais da UFJF [7].

AN

Figura 1: Pértico Biengastado ensaiado no Laboratério de Imagem e Sinais da UFJF. (a) Vista frontal da estrutura no
cenario 1; (b) Vista frontal da estrutura no cenario 4. Adaptado de [7].
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Neste pdrtico, quatro acelerdometros piezoelétricos unidirecionais (100 mV/g) foram fixados na estrutura para
medir aceleracdes horizontais. Uma carga de impacto foi aplicada usando um péndulo com massa de 14 g. Para se
obter as respostas dinamicas, o péndulo foi liberado do repouso a partir de uma posicao constante, sendo sujeito a
acdo da gravidade até a sua colisdo com a estrutura. No total, cinco cenarios de danos simulados através da adicdo
de massas nas posicdes m; e m, (ver Figura[l]) foram avaliados, conforme mostrado na Tabela

Tabela 1: Cenarios de dano avaliados no pdrtico.

Cenério Configuracio
1 Nenhuma massa adicionada a estrutura. m; = m, = 0;
2 Uma massa de 7,81 g adicionada a estrutura. m; = 7,81g e m, = 0;
3 Duas massas de 7,81 g adicionadas a estrutura. m; = 15,62 g e m, = 0;
4 Trés massas de 7,81 g adicionadas a estrutura. m; =15,62gem, =7,81g;
5 Quatro massas de 7,81 g adicionadas a estrutura. m; = 15,62 ge m, = 15,62 g.

Os dados do cendrio 1 foram utilizados para a fase de treinamento, sendo, portanto, esperado que as reconstru-
coes desse cendrio apresentem maior precisdo. Nos demais cenarios, ao aplicar o modelo treinado com dados do
cenario 1, ¢ previsivel que as diferencas de reconstrucio sejam mais acentuadas. A Figura[2)ilustra esses resultados,
apresentando quatro graficos do indice Hotelling T?, gerados com diferentes tipos de AE aplicados ao acelerdmetro
acl. Resultados similares foram observados para os demais acelerdmetros e por isso foram omitidos.

Todas as metodologias avaliadas geraram valores de T2 similares entre as classes de validacio e treinamento,
evidenciando a capacidade dos modelos em classificar novos dados dessa estrutura, uma vez que os conjuntos de
validacdo e treinamento pertencem ao mesmo estado estrutural e, portanto, deveriam apresentar T2 semelhantes.
Além disso, todas as metodologias identificaram corretamente a presenca de mudancas estruturais, pois todas as
classes de monitoramento excederam o limite superior de controle pré-estabelecido.
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Figura 2: Resultados do portico biengastado (Analise 1 - Acelerometro 1). (a) AE; (b) SAE; (c) VAE; (d) CAE.

Contudo, apenas o VAE conseguiu quantificar precisamente as alteracdes estruturais, com os valores de T? au-
mentando conforme a massa era adicionada ao portico, sem que pontos de diferentes cenarios compartilhassem
a mesma faixa de valores. Apesar de os resultados do SAE e do CAE (Figuras[2b e[2d, respectivamente) também
demonstrarem aumento nos valores de T? com a adicdo de massa, ainda houve casos em que diferentes cendrios
apresentaram T2 dentro da mesma faixa. Assim, as metodologias AE, SAE e CAE (Figura , b, d) exibiram valores
de T? similares entre sinais de classes distintas, ndo sendo capazes de quantificar com precisdo os niveis de mudancas
estruturais.
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3.2 Pértico Tridimensional - “Yellow Frame” (Analises 2 e 3)

Simulacées semelhantes foram conduzidas no conhecido “Yellow Frame” ensaiado no Laboratério de Pesquisa em
Engenharia Sismica da UBC [8]. Conforme ilustrado na Figura este portico consiste de quatro pavimentos e foi
instalado sobre uma laje de concreto externa ao laboratério para simular condi¢des ambientais.

Foram impostos diferentes cenarios de danos (1-6) a estrutura, simulando a remocao ou adi¢ao gradual dos con-
traventamentos. Em seguida, danos progressivos foram simulados na estrutura sem contraventamentos, por meio
do afrouxamento dos parafusos nas conexdes viga-coluna (cenarios 7-9). Com base nesses cendrios, realizaram-se
duas andlises distintas: a primeira avaliou o impacto da remocao dos contraventamentos (Analise 2) e a segunda,
os efeitos do afrouxamento dos parafusos (Andlise 3). Em ambas as andlises, manteve-se a mesma configuracio de
teste: quinze acelerdmetros com frequéncia de amostragem de 200 Hz, além de um filtro anti-aliasing com corte em
50 Hz. A Tabela 2lista todos os cenarios considerados nas duas analises.

Figura 3: “Yellow Frame” (a) sem contraventamentos e (b) com contraventamentos. [8]]

Tabela 2: Cenadrios estruturais avaliados nas analises 1 € 2

Cenario Configuracio
1 Estrutura completamente contraventada;
2 Remocao de todos os contraventamentos do lado leste;
3 Remocido dos contraventamentos de todos os pavimentos de uma baia no canto sudeste;
4 Remocio dos contraventamentos dos 1° e 4° pavimentos de uma baia no canto sudeste;
5 Remocido dos contraventamentos do 1° pavimento de uma baia no canto sudeste;
6 Remocio dos contraventamentos do 2° pavimento na face norte;
7 Remocao de todos os contraventamentos de todas as faces;
8 Naio contraventada + parafusos afrouxados nas extremidades na face leste, lado norte.
9 Nio contraventada + parafusos afrouxados nos pavimentos 1 e 2 - face leste, lado norte.

Nesta estrutura, assim como no caso precedente, todas as metodologias analisadas obtiveram valores de T2 simi-
lares entre as classes de validagdo e treinamento, confirmando a capacidade dos modelos de classificar novos dados,
ja que os de validacio e treinamento pertencem ao mesmo estado estrutural.

Na ordem de aquisicdo, para a Andlise 2, os cendrios 1, 5, 4, 3 e 2 simulam danos progressivos, sendo renomeados
de classes de 1 a 5, conforme a progressdo dos danos, enquanto o cendrio 6, que simula um reparo na estrutura,
foi chamado de classe 6. Para a Analise 3, Os casos 7, 9 e 8, nessa ordem, representam danos crescentes, e foram
renomeados de classes 1, 2 e 3 conforme o0 aumento dos danos.

Além disso, todos os métodos identificaram corretamente a presenca de alteragdes estruturais, pois todas as clas-
ses de monitoramento excederam o UCL. A Figura[dapresenta os resultados ap6s a classificacdo dos dados da Anélise
2ea Figura para a Andlise 3. Em ambos os casos foram apresentados os resultados apenas para o acelerdometro 4,
uma vez que os demais acelerémetros forneceram resultados semelhantes.

Na Andlise 2, 0 AE e o SAE (Figura[4p,b) ndo foram capazes de identificar os dados de validagdo como sendo da
mesma classe dos de treinamento, ndo atendendo os minimos requisitos de classificacdo. O VAE e o CAE forneceram
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bons resultados para a identificacdo das alteragdes estruturais, pois classificaram corretamente os sinais de validacio
como semelhantes aos de treinamento e, em ambos os modelos, todas as classes de monitoramento ficaram acima da
UCL. Além disso, os dados pertencentes a Classe 6 ficaram com valores de T? predominantemente inferiores aos da
Classe 5, indicando correta identificacdo da adicdo de contraventamentos, simulando um reparo estrutural. Entre
todas as metodologias avaliadas, o VAE (Figura[dk) se destacou novamente como o mais eficaz na quantificagdo das
alteracoes, pelo aumento nos valores de T2 & medida que a remogéo dos contraventamentos foi realizada.
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Figura 4: Resultados do portico tridimensional para remocéo de contraventamento (Andlise 2 - acelerdmetro 4). (a)
AE; (b) SAE; (¢c) VAE; (d) CAE.

Na Analise 3, todas as metodologias obtiveram valores de T2 semelhantes entre as classes de validagio e trei-
namento em todos os 15 acelerometros, confirmando a capacidade dos modelos de classificar novos dados. Além
disso, todas as metodologias identificaram corretamente a presenca de alteragdes estruturais, pois todas as classes de
monitoramento excederam o UCL. Para quantificar as alteracdes, o VAE e o CAE (Figura[St,d) foram mais eficazes,
pois ha uma maior diferenca entre os valores de T2 de classes diferentes.
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Figura 5: Resultados do portico tridimensional para o afrouxamento de parafusos (Andlise 3 - acelerometro 4). (a)
AE; (b) SAE; (c) VAE; (d) CAE.
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3.3 Ponte Z24 (Analise 4)

Apos os testes e os bons resultados obtidos nas andlises anteriores, os modelos foram avaliados usando dados de uma
estrutura real, a Ponte Z24 (Figural6). Essa ponte foi instrumentada e as respostas dindmicas foram coletadas. Ace-
lerdmetros foram posicionados no tabuleiro da ponte ao longo de trés linhas de medi¢do paralelas: uma localizada
na linha central e as outras duas nas margens laterais.

Utzenstorf 2 L3 4 5 6 .7 8 9 10 Koppigen
T  Sm——] I I [n T —a
Kh3 KR
Kv3 P K
Khdes . - 4
kKwy - g TN R A— <.
= S—/ 4& T
Kh2 Kh2 Kvl
Kvl Kv2 Kv2 v
27mA > 14m 30m 14m 2:7m

Figura 6: Esboco da Ponte Z24. Adaptado de [9].

Para simular danos, o pilar no lado de Koppigen foi cortado e o concreto foi substituido por placas de ago e trés
macacos hidraulicos. Esse sistema instalado permitia abaixar o pilar para simular causas reais de danos, como as-
sentamento e erosdo do subsolo. Nessas circunstancias, foram analisados os seguintes cenarios, conforme mostrado
na Tabela

Tabela 3: Cenarios estruturais avaliados na Ponte Z24.

Cenario Configuracio
1 Estrutura ndo danificada a 17 °C;
2 Estrutura néo danificada (com a adi¢do de macacos hidraulicos) a 26 °C;
3 Assentamento de 40 mm no pilar indicado a 29 °C;
4 Assentamento de 80 mm no pilar indicado a 26 °C.

Os resultados obtidos pelos modelos, a partir do acelerdmetro 2 (os demais acelerdmetros apresentaram resulta-
dos semelhantes), sdo apresentados na Figura |7, Todas as metodologias resultaram em valores de T2 semelhantes
entre as classes de validagdo e treinamento, indicando uma boa capacidade dos modelos de classificar novos dados.
Além disso, todas as metodologias identificaram corretamente a presenca de alteracGes estruturais, uma vez que
todas as classes de monitoramento excederam o UCL. No entanto, a metodologia baseada no VAE foi a que melhor
quantificou mudangas estruturais, com valores de T? que aumentaram progressivamente conforme se intensificaram
as mudancas em relacdo ao estado original..

Mesmo com o modelo VAE, alguns valores de T2 para a Classe 2 foram semelhantes aos da Classe 3. Isso pro-
vavelmente ocorreu devido as variacées de temperatura entre as classes analisadas, pois as frequéncias naturais de
uma estrutura de concreto tendem a ser significativamente mais altas em temperaturas mais baixas. Também é
importante observar que variacoes na intensidade do vento e nas cargas exercidas sobre a estrutura interferem nas
vibracgdes estruturais. Entretanto, mesmo com esses fatores, o VAE foi capaz de quantificar os danos estruturais de
maneira satisfatoria.
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Figura 7: Resultados da Ponte Z24 (Andlise 4 - Acelerdmetro 2) (a) AE; (b) SAE; (c) VAE; (d) CAE.

4 Conclusoes

Este trabalho avaliou a eficacia de quatro metodologias baseadas em autocodificadores, combinadas com a ferra-
menta estatistica Hotelling T2, para a deteccdo e a quantificacio de danos estruturais. Os resultados demonstram
que o modelo que combina o Autocodificador Variacional com a ferramenta -T2 superou os demais em precisio
para quantificar altera¢des. Embora os modelos de Autocodificador Tradicional, Autocodificador Esparso e Auto-
codificador Convolucional tenham exibido limitagdes na quantificacio dos danos, todas as variagdes foram capazes
de identificar anomalias estruturais, mostrando-se adequadas para as etapas iniciais de diagndstico e deteccdo de
falhas.

Por fim, os avancos continuos nessas metodologias ndo apenas aprofundam o entendimento dos mecanismos de
comportamento estrutural, mas também oferecem aplicacdes potenciais na localizacio de alteragdes estruturais e na
avaliacdo da vida estrutural remanescente. Essa capacidade preditiva pode guiar decisdes estratégicas e proativas,
permitindo a implementagdo mais eficaz de medidas preventivas e corretivas.
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