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Resumo

O monitoramento de integridade estrutural (SHM, do inglês Structural Health Monitoring) tem como objetivo ga-
rantir a segurança e o funcionamento das estruturas. Nos últimos anos, diversas técnicas baseadas em aprendizado
de máquina têm sido utilizadas para esse fim. Dentre elas, destacam-se os autocodificadores (AE, do inglês Autoen-
coder), que são modelos capazes de extrair características a partir de dados de vibração, reduzindo a sua dimensio-
nalidade, constituindo-se como ferramentas eficazes para aplicações de SHM. Este trabalho investiga a eficácia de
quatro metodologias baseadas em autocodificadores, combinadas a uma ferramenta estatística para detectar e quan-
tificar mudanças estruturais em três diferentes estruturas. Os sinais de vibração das estruturas são utilizados como
dados de entrada e os valores da camada latente dos autocodificadores como parâmetros no teste 𝑇2 de Hotelling
para avaliar mudanças estruturais. Observou-se nos resultados obtidos que o modelo de autocodificador de melhor
desempenho, Variacional𝐴𝐸−𝑇2, supera os outros na identificação e quantificação das mudanças estruturais. Em-
bora os modelos AE, AE Esparso e AE Convolucional tenham apresentado limitações quanto a quantificação das
alterações, eles apresentaram desempenho relevante para a detecção de anomalias.

Palavras-chave
Monitoramento de Integridade Estrutural ∙ Detecção de Danos ∙ Autocodificadores

Abstract

Structural Health Monitoring (SHM) aims to ensure the safety and functionality of structures. In recent years, va-
rious machine learning techniques have been employed for this purpose. Among them, autoencoders (AE) stand
out as models capable of extracting features from vibration data, reducing dimensionality and proving to be effective
tools for SHM applications. This work investigates the effectiveness of four methodologies based on autoencoders,
combined with a statistical tool to detect and quantify structural changes in three different structures. The vibration
signals from the structures are used as input data, and the values from the latent layer of the autoencoders are used
as parameters in the Hotelling 𝑇2 test to evaluate structural changes. The results obtained indicate that the autoen-
coder model with the best performance, Variational 𝐴𝐸 −𝑇2, outperforms the others in identifying and quantifying
structural changes. Although the AE, Sparse AE, and Convolutional AE models exhibited limitations regarding the
quantification of alterations, they showed relevant performance for anomaly detection.

⭐Este artigo é uma versão estendida do trabalho apresentado no XXVII ENMC Encontro Nacional de Modelagem Computacional e XV ECTM
Encontro de Ciência e Tecnologia de Materiais, ocorridos em Ilhéus – BA, de 1 a 4 de outubro de 2024.
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1 Introdução
Dentre as principais preocupações dos engenheiros ao longo do ciclo de vida das construções, destacam-se o bom
funcionamento dos sistemas estruturais e a segurança dos usuários. Considerando-se que as inspeções humanas,
quando conduzidas visualmente, podem ser suscetíveis à imprecisões e erros, omonitoramento de integridade estru-
tural (SHM, do inglês StructuralHealthMonitoring) tem surgido como uma abordagempotencial para a identificação
precoce de falhas em estruturas [1]. Esta metodologia depende principalmente do uso de acelerômetros conectados
às estruturas para registrar dados de vibração ao longo do tempo. Com avanços significativos em aprendizado de
máquina (ML, do inglêsMachine Learning) e Inteligência Artificial (IA), esses dados se tornaram não apenas mais
precisos, mas também mais acessíveis, possibilitando sua aplicação generalizada [2]. Como resultado, sistemas de
SHM oferecem uma abordagem mais confiável e econômica para a manutenção estrutural, permitindo a detecção
remota de sinais de deterioração com base em limiares predefinidos, o que pode reduzir significativamente os custos
de reparo [3] [4].

Com os avanços computacionais, métodos que utilizam diretamente dados vibracionais brutos estão se tornando
mais dominantes [4] [5]. Essas abordagens podem detectar alterações estruturais processando sinais adquiridos
da estrutura ao longo do tempo, extraindo características relevantes e realizando classificações com custos compu-
tacionais relativamente baixos. Um autocodificador (AE, do inglês Autoencoder) é um modelo de aprendizado não
supervisionado projetado para reconstruir dados de entrada e reduzir a dimensionalidade. Ele comprime informa-
ções em uma representação latente e reconstrói os dados originais a partir desta forma reduzida. Composto por um
codificador e um decodificador, ele minimiza a diferença entre a entrada e a saída reconstruída. Existem variações
específicas, como autocodificadores esparsos (SAEs, do inglês Sparse Autoencoder), que introduzem restrições de
regularização para forçar a rede a aprender representações mais eficientes; autocodificadores variacionais (VAEs,
do inglês Variational Autoencoder), que incorporam uma abordagem probabilística para modelar a distribuição dos
dados; e autocodificadores convolucionais (CAEs, do inglês Convolutional Autoencoder), que são adaptados para
processar dados de imagem capturando características espaciais [6].

Neste contexto, este artigo avalia comparativamente o desempenho de quatro diferentes autocodificadores (AE,
SAE, VAE e CAE) na identificação de alterações estruturais. Para avaliar a metodologia, três estruturas diferentes
são consideradas: (i) um pórtico biengastado ensaiado no Laboratório de Imagens e Sinais da Universidade Federal
de Juiz de Fora (UFJF), submetido a cinco cenários diferentes de danos [7]; (ii) um pórtico de aço de quatro andares
localizado no Laboratório de Engenharia Sísmica da Universidade da Colúmbia Britânica (UBC), que sofreu dois
tipos de alterações - remoção de contraventamentos e afrouxamento de parafusos [8]; (iii) a Ponte Z24, que ligava
as cidades de Koppigen e Utzenstorf na Suíça e que foi submetida a vários testes de danos progressivos simulando
situações reais de degradação em diferentes condições de temperatura para fins científicos [9]. Para todas as apli-
cações, foi construído um índice baseado na estatística Shewhart T Control Chart (estatísticaHotelling 𝑇2) [10], que
foi calculada usando os dados da camada latente dos autocodificadores, permitindo a identificação e a quantificação
de danos em todas as estruturas analisadas.

2 Metodologia
A metodologia proposta busca avaliar a capacidade dos AEs de separar, de maneira não supervisionada, sinais de
vibração pertencentes a diferentes comportamentos dinâmicos estruturais. Isso é alcançado treinando o modelo
com apenas uma parte dos dados das estruturas intactas e, posteriormente, testando-o com os restantes. Durante
esse processo, o modelo compara cada sinal com a classe de referência, ou seja, estado de dano, derivando um erro
específico de reconstrução, aqui usada a métrica 𝑇2 para essa avaliação, que aumenta gradualmente entre as classes,
mas permanece relativamente constante dentro de cada uma delas. Dessa forma, todos os dados são divididos em
três conjuntos da seguinte forma:

• Fase de Treinamento: Nesta etapa, um conjunto de dados extraídos do estado não danificado da estrutura
é usado para treinar o modelo de autocodificador. Este conjunto de dados é chamado de conjunto de treina-
mento;

• Fase de Validação: Durante esta fase, outro conjunto de dados (de validação), também extraído do mesmo
estado estrutural da fase de treinamento, é aplicado aomodelo treinado na fase anterior. O objetivo é verificar a
capacidade de classificar novos dados. Espera-se que omodelo resulte em valores𝑇2 estatisticamente similares
para os conjuntos de treinamento e validação, uma vez que pertencem ao mesmo estado estrutural;
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• Fase deMonitoramento: Nesta fase, conjuntos de dados (demonitoramento) extraídos de outros casos estru-
turais, diferentes dos utilizados nas fases de treinamento e validação, são apresentados ao modelo. Espera-se
que sejam produzidos valores de 𝑇2 mais altos do que os obtidos nas fases anteriores, já que pertencem a um
estado estrutural diferente daquele usado para treinamento.

Para todas as estruturas analisadas, a Transformada Rápida de Fourier (FFT, do inglês Fast Fourier Transform)
dos sinais dinâmicos estruturais foi utilizada como entrada para os modelos do autocodificador. Essa escolha foi
motivada pelo fato de que as compressões e reconstruções realizadas pelos AE foram mais precisas nesse domínio
em comparação ao domínio temporal [11].

Para garantir a variabilidade estatística dentro do conjunto de dados avaliado, utilizou-se de um esquema de
validação cruzada com 10 folds para cada estrutura, a fim de obter avaliações mais homogêneas e precisas. A ordem
dos dados dentro das classes também foi modificada aleatoriamente no início de cada repetição, alterando-se, assim,
a porção e a sequência de dados de estrutura íntegra usados para treinamento e validação. Após realizar a FFT sobre
os dados de aceleração, todos os resultados foram padronizados usando a padronização z-score.

Todos osmodelos deAEdependemdos seguintes parâmetros e hiperparâmetros: taxa de aprendizado, número de
épocas, tamanho do lote (batch size), dimensão original, dimensão latente e algoritmo otimizador. No entanto, para
o SAE, também é necessário definir o parâmetro de esparsidade 𝜆; para o VAE, é utilizada a dimensão intermediária;
para o CAE, como a camada latente não é unidimensional, é preciso definir o número de filtros e seus tamanhos
para essa camada.

Os hiperparâmetros dos AEs foram selecionados utilizando o otimizador de parâmetros Optuna [12]. Esta é
uma ferramenta automatizada e eficiente de otimização que emprega técnicas de busca inteligente para encontrar
as melhores combinações de hiperparâmetros para um determinado modelo de aprendizado de máquina, a partir
de uma abordagem de busca e seleção baseada em amostragem eficiente. Para isso, basta que o usuário insira in-
tervalos de busca para cada item a ser otimizado, os quais neste trabalho foram escolhidos com base em práticas
estabelecidas na literatura e experimentos preliminares [13] [7] [11] [14] [15], além do objetivo da otimização.
Esses hiperparâmetros otimizados foram posteriormente utilizados para treinar os autocodificadores.

Todos os dados das fases de treinamento e validação das aplicações são compostos pelo cenário 1 (estrutura sem
dano). Após o treinamento, validação e otimização, os resultados passam pela fase demonitoramento. Nessa fase, há
reconstrução dos sinais dos demais cenários para, nessemomento, realizar o cálculo usando a estatísticaHotelling𝑇2.
Por fim, foi usado um limiar pré-fixado (UCL) acima dos 95% desses valores obtidos durante a fase de treinamento
para separar os dados com e sem dano.

3 Aplicações
3.1 Pórtico Biengastado (Análise 1)
A primeira estrutura analisada trata-se de um pórtico biengastado (Figura 1) ensaiado no Laboratório de Imagem e
Sinais da UFJF [7].

(b)(a)

m1

m2

Figura 1: Pórtico Biengastado ensaiado no Laboratório de Imagem e Sinais da UFJF. (a) Vista frontal da estrutura no
cenário 1; (b) Vista frontal da estrutura no cenário 4. Adaptado de [7].
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Neste pórtico, quatro acelerômetros piezoelétricos unidirecionais (100 mV/g) foram fixados na estrutura para
medir acelerações horizontais. Uma carga de impacto foi aplicada usando um pêndulo com massa de 14 𝑔. Para se
obter as respostas dinâmicas, o pêndulo foi liberado do repouso a partir de uma posição constante, sendo sujeito à
ação da gravidade até a sua colisão com a estrutura. No total, cinco cenários de danos simulados através da adição
de massas nas posições𝑚1 e𝑚2 (ver Figura 1) foram avaliados, conforme mostrado na Tabela 1.

Tabela 1: Cenários de dano avaliados no pórtico.

Cenário Configuração
1 Nenhuma massa adicionada à estrutura. 𝑚1 =𝑚2 = 0;
2 Uma massa de 7,81 𝑔 adicionada à estrutura. 𝑚1 = 7,81𝑔 e𝑚2 = 0;
3 Duas massas de 7,81 𝑔 adicionadas à estrutura. 𝑚1 = 15,62 𝑔 e𝑚2 = 0;
4 Três massas de 7,81 𝑔 adicionadas à estrutura. 𝑚1 = 15,62 𝑔 e𝑚2 = 7,81 𝑔;
5 Quatro massas de 7,81 𝑔 adicionadas à estrutura. 𝑚1 = 15,62 𝑔 e𝑚2 = 15,62 𝑔.

Os dados do cenário 1 foram utilizados para a fase de treinamento, sendo, portanto, esperado que as reconstru-
ções desse cenário apresentem maior precisão. Nos demais cenários, ao aplicar o modelo treinado com dados do
cenário 1, é previsível que as diferenças de reconstrução sejam mais acentuadas. A Figura 2 ilustra esses resultados,
apresentando quatro gráficos do índice Hotelling 𝑇2, gerados com diferentes tipos de AE aplicados ao acelerômetro
ac1. Resultados similares foram observados para os demais acelerômetros e por isso foram omitidos.

Todas as metodologias avaliadas geraram valores de 𝑇2 similares entre as classes de validação e treinamento,
evidenciando a capacidade dos modelos em classificar novos dados dessa estrutura, uma vez que os conjuntos de
validação e treinamento pertencem ao mesmo estado estrutural e, portanto, deveriam apresentar 𝑇2 semelhantes.
Além disso, todas as metodologias identificaram corretamente a presença de mudanças estruturais, pois todas as
classes de monitoramento excederam o limite superior de controle pré-estabelecido.

Figura 2: Resultados do pórtico biengastado (Análise 1 - Acelerômetro 1). (a) AE; (b) SAE; (c) VAE; (d) CAE.

Contudo, apenas o VAE conseguiu quantificar precisamente as alterações estruturais, com os valores de 𝑇2 au-
mentando conforme a massa era adicionada ao pórtico, sem que pontos de diferentes cenários compartilhassem
a mesma faixa de valores. Apesar de os resultados do SAE e do CAE (Figuras 2b e 2d, respectivamente) também
demonstrarem aumento nos valores de 𝑇2 com a adição de massa, ainda houve casos em que diferentes cenários
apresentaram 𝑇2 dentro da mesma faixa. Assim, as metodologias AE, SAE e CAE (Figura 2a, b, d) exibiram valores
de𝑇2 similares entre sinais de classes distintas, não sendo capazes de quantificar comprecisão os níveis demudanças
estruturais.
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3.2 Pórtico Tridimensional - “Yellow Frame" (Análises 2 e 3)
Simulações semelhantes foram conduzidas no conhecido “Yellow Frame" ensaiado no Laboratório de Pesquisa em
Engenharia Sísmica da UBC [8]. Conforme ilustrado na Figura 3, este pórtico consiste de quatro pavimentos e foi
instalado sobre uma laje de concreto externa ao laboratório para simular condições ambientais.

Foram impostos diferentes cenários de danos (1-6) à estrutura, simulando a remoção ou adição gradual dos con-
traventamentos. Em seguida, danos progressivos foram simulados na estrutura sem contraventamentos, por meio
do afrouxamento dos parafusos nas conexões viga-coluna (cenários 7-9). Com base nesses cenários, realizaram-se
duas análises distintas: a primeira avaliou o impacto da remoção dos contraventamentos (Análise 2) e a segunda,
os efeitos do afrouxamento dos parafusos (Análise 3). Em ambas as análises, manteve-se a mesma configuração de
teste: quinze acelerômetros com frequência de amostragem de 200 Hz, além de um filtro anti-aliasing com corte em
50 Hz. A Tabela 2 lista todos os cenários considerados nas duas análises.

Figura 3: “Yellow Frame” (a) sem contraventamentos e (b) com contraventamentos. [8]

Tabela 2: Cenários estruturais avaliados nas análises 1 e 2

Cenário Configuração
1 Estrutura completamente contraventada;
2 Remoção de todos os contraventamentos do lado leste;
3 Remoção dos contraventamentos de todos os pavimentos de uma baia no canto sudeste;
4 Remoção dos contraventamentos dos 1º e 4º pavimentos de uma baia no canto sudeste;
5 Remoção dos contraventamentos do 1º pavimento de uma baia no canto sudeste;
6 Remoção dos contraventamentos do 2º pavimento na face norte;
7 Remoção de todos os contraventamentos de todas as faces;
8 Não contraventada + parafusos afrouxados nas extremidades na face leste, lado norte.
9 Não contraventada + parafusos afrouxados nos pavimentos 1 e 2 - face leste, lado norte.

Nesta estrutura, assim como no caso precedente, todas as metodologias analisadas obtiveram valores de 𝑇2 simi-
lares entre as classes de validação e treinamento, confirmando a capacidade dos modelos de classificar novos dados,
já que os de validação e treinamento pertencem ao mesmo estado estrutural.

Na ordem de aquisição, para a Análise 2, os cenários 1, 5, 4, 3 e 2 simulam danos progressivos, sendo renomeados
de classes de 1 a 5, conforme a progressão dos danos, enquanto o cenário 6, que simula um reparo na estrutura,
foi chamado de classe 6. Para a Análise 3, Os casos 7, 9 e 8, nessa ordem, representam danos crescentes, e foram
renomeados de classes 1, 2 e 3 conforme o aumento dos danos.

Além disso, todos os métodos identificaram corretamente a presença de alterações estruturais, pois todas as clas-
ses demonitoramento excederamoUCL.AFigura 4 apresenta os resultados após a classificação dos dados daAnálise
2 e a Figura 5 para a Análise 3. Em ambos os casos foram apresentados os resultados apenas para o acelerômetro 4,
uma vez que os demais acelerômetros forneceram resultados semelhantes.

Na Análise 2, o AE e o SAE (Figura 4a,b) não foram capazes de identificar os dados de validação como sendo da
mesma classe dos de treinamento, não atendendo osmínimos requisitos de classificação. OVAE e o CAE forneceram
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bons resultados para a identificação das alterações estruturais, pois classificaram corretamente os sinais de validação
como semelhantes aos de treinamento e, em ambos osmodelos, todas as classes demonitoramento ficaram acima da
UCL. Além disso, os dados pertencentes à Classe 6 ficaram com valores de 𝑇2 predominantemente inferiores aos da
Classe 5, indicando correta identificação da adição de contraventamentos, simulando um reparo estrutural. Entre
todas as metodologias avaliadas, o VAE (Figura 4c) se destacou novamente como o mais eficaz na quantificação das
alterações, pelo aumento nos valores de 𝑇2 à medida que a remoção dos contraventamentos foi realizada.

Figura 4: Resultados do pórtico tridimensional para remoção de contraventamento (Análise 2 - acelerômetro 4). (a)
AE; (b) SAE; (c) VAE; (d) CAE.

Na Análise 3, todas as metodologias obtiveram valores de T² semelhantes entre as classes de validação e trei-
namento em todos os 15 acelerômetros, confirmando a capacidade dos modelos de classificar novos dados. Além
disso, todas as metodologias identificaram corretamente a presença de alterações estruturais, pois todas as classes de
monitoramento excederam o UCL. Para quantificar as alterações, o VAE e o CAE (Figura 5c,d) foram mais eficázes,
pois há uma maior diferença entre os valores de T² de classes diferentes.

Figura 5: Resultados do pórtico tridimensional para o afrouxamento de parafusos (Análise 3 - acelerômetro 4). (a)
AE; (b) SAE; (c) VAE; (d) CAE.
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3.3 Ponte Z24 (Análise 4)
Após os testes e os bons resultados obtidos nas análises anteriores, os modelos foram avaliados usando dados de uma
estrutura real, a Ponte Z24 (Figura 6). Essa ponte foi instrumentada e as respostas dinâmicas foram coletadas. Ace-
lerômetros foram posicionados no tabuleiro da ponte ao longo de três linhas de medição paralelas: uma localizada
na linha central e as outras duas nas margens laterais.

Figura 6: Esboço da Ponte Z24. Adaptado de [9].

Para simular danos, o pilar no lado de Koppigen foi cortado e o concreto foi substituído por placas de aço e três
macacos hidráulicos. Esse sistema instalado permitia abaixar o pilar para simular causas reais de danos, como as-
sentamento e erosão do subsolo. Nessas circunstâncias, foram analisados os seguintes cenários, conforme mostrado
na Tabela 3.

Tabela 3: Cenários estruturais avaliados na Ponte Z24.

Cenário Configuração
1 Estrutura não danificada a 17 °C;
2 Estrutura não danificada (com a adição de macacos hidráulicos) a 26 °C;
3 Assentamento de 40 mm no pilar indicado a 29 °C;
4 Assentamento de 80 mm no pilar indicado a 26 °C.

Os resultados obtidos pelos modelos, a partir do acelerômetro 2 (os demais acelerômetros apresentaram resulta-
dos semelhantes), são apresentados na Figura 7. Todas as metodologias resultaram em valores de 𝑇2 semelhantes
entre as classes de validação e treinamento, indicando uma boa capacidade dos modelos de classificar novos dados.
Além disso, todas as metodologias identificaram corretamente a presença de alterações estruturais, uma vez que
todas as classes de monitoramento excederam o UCL. No entanto, a metodologia baseada no VAE foi a que melhor
quantificoumudanças estruturais, com valores de𝑇2 que aumentaramprogressivamente conforme se intensificaram
as mudanças em relação ao estado original..

Mesmo com o modelo VAE, alguns valores de 𝑇2 para a Classe 2 foram semelhantes aos da Classe 3. Isso pro-
vavelmente ocorreu devido às variações de temperatura entre as classes analisadas, pois as frequências naturais de
uma estrutura de concreto tendem a ser significativamente mais altas em temperaturas mais baixas. Também é
importante observar que variações na intensidade do vento e nas cargas exercidas sobre a estrutura interferem nas
vibrações estruturais. Entretanto, mesmo com esses fatores, o VAE foi capaz de quantificar os danos estruturais de
maneira satisfatória.

Vetor, Rio Grande, vol. 35, no. 2, e18346, 2025. 7



Estudo comparativo da eficácia de autocodificadores na identificação de danos estruturais Spínola Neto et al.

Figura 7: Resultados da Ponte Z24 (Análise 4 - Acelerômetro 2) (a) AE; (b) SAE; (c) VAE; (d) CAE.

4 Conclusões
Este trabalho avaliou a eficácia de quatro metodologias baseadas em autocodificadores, combinadas com a ferra-
menta estatística Hotelling T², para a detecção e a quantificação de danos estruturais. Os resultados demonstram
que o modelo que combina o Autocodificador Variacional com a ferramenta -𝑇2 superou os demais em precisão
para quantificar alterações. Embora os modelos de Autocodificador Tradicional, Autocodificador Esparso e Auto-
codificador Convolucional tenham exibido limitações na quantificação dos danos, todas as variações foram capazes
de identificar anomalias estruturais, mostrando-se adequadas para as etapas iniciais de diagnóstico e detecção de
falhas.

Por fim, os avanços contínuos nessas metodologias não apenas aprofundam o entendimento dos mecanismos de
comportamento estrutural, mas também oferecem aplicações potenciais na localização de alterações estruturais e na
avaliação da vida estrutural remanescente. Essa capacidade preditiva pode guiar decisões estratégicas e proativas,
permitindo a implementação mais eficaz de medidas preventivas e corretivas.
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