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ABSTRACT: This paper presents a parallel implementation of the implicitly restarted Lanc-
zos method for the solution of large and sparse eigenproblems that occur in modal analysis of
complex structures using the finite element method. The implicitly restarted technique improves
convergence of the desired eigenvalues without the penalty of lost of orthogonality keeping the
number of factorization steps in a modest size. In the parallel solution, a subdomain by subdo-
main approach was implemented and overlapping and non-overlapping mesh partitions were
used. Compressed data structures in the formats CSRC and CSRC/CSR were employed to
store the global matrices coefficients. The parallelization of numerical linear algebra operations
presented in both Krylov and implicitly restarted methods are discussed.
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1 INTRODUCTION

A standard finite element discretization of ellipitic eigenvalue problems leads to the algebraic
form:
Ku = X' Mo (1)

where K is the stiffness matrix, M is the mass matrix, the parameter h is the characteristic
mesh size, \" is the approximate eigenvalue and «" is the finite-dimensional eigenvector ap-
proximation. Due to the nature of fem approximations, the matrices K and M are real, sparse,
symmetric and positive definite.

Krylov subspace based methods, such as Lanczos and Arnoldi [1, 2] algorithms, have been
widely used for solving eigenproblems associated with large sparse systems. The Krylov sub-
space associated with a matrix A and a nonzero starting vector v; is defined as:

K(A,v1,k) = span {vl, Avy, A%vq, - ,Ak_lvl} (2)

where £ is the order of Krylov subspace. Both Lanczos and Arnoldi methods are intended to
generate an orthogonal basis for Eq. (2) in such way that the projection of the original matrix
into this basis gives a smaller and easier problem to solve (the projected matrix is tridiagonal
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or Hessenberg if Lanczos or Arnoldi methods is respectively used). It's well known that for
orthogonal projections of symmetric problems, Arnoldi and Lanczos factorizations are, mathe-
matically, the same method. Nowadays, the implicitly restarted Lanczos method with spectral
transformation such as

(K —oM) *Mu" = u" (3a)

where,
1

N —o ¢
represents the state of art of numerical solution of eigenproblems [3], [4] and [5].
Algorithm (1) performs a k-step Lanczos factorization:
Input: kg, j, K, M, Vko = [1)1,’[}2, e ,Uko], Tko, fko
k= ko + j;
if (ko = 0) then
Initial vector generation: vy, with ||v1|| = vI Mv; = 1; wy = K~*Muvy; Ty = vl Muwy;
J1=w1 —Tyvy; ko = ko + 1;

0= £ AR (3b)

end
fori=ky,---,k—1do
Bi = || fillars
viv1 = fi/Bi;

Vi1 = [Vi, vigals

wiy1 = K1 Mujyq;

« T; .
Biei

t =V& Mwiq;

T, = [ T; t };

fir1 = wir1 — Vi s
Reorthogonalization Process.
end

ko =k

Algorithm 1: k-steps of Lanczos factorization (o = 0)

Some important details should be mentioned: in the spectral transformation an algebraic
linear system was solved with PCG (preconditioned conjugate gradient) and the DGKS [6]
method was used to maintain the numerical orthogonality of the basis vectors.

A disadvantage of Lanczos/Arnoldi methods is that one can’t know, a priori, how many
steps of Algorithm (1) must be performed until the desired eigenvalues and eigenvectors be-
come well approximated by Ritz values and vectors. The increasing of the number of steps
leads to a numerical difficulty: the lost of orthogonality of basis vectors V, especially for large
systems. Also, memory requirements to store V}, begin to be an issue because to recover the
eigenvectors of original problem, one must perform a dense matrix-vector operation involving
Vi and each eigenvector p of the reduced problem.

To overcome these difficulties, restarting techniques [7, 8, 9, 10] are employed to keep & in
a modest size by applying polynomial filters and then, restarting the factorization from a chosen
m-th step. Once the k — m steps are rebuild, one obtains an updated k-th step factorization.
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The IRLM (Algorithm 2) combines the k-step Lanczos factorization with a implicitly shifted QR
iteration [11]. The spectrum of T, is evaluated and separated in two disjoints sets, one formed
with the m approximations of wanted eigenvalues and another with the unwanted portion of
the spectrum. The £ — m unwanted eigenvalues are sorted out and used as shifts in the QR
process. This process is repeated until the contribution of the unwanted modes is damped and
then, the m approximations of the wanted eigenvalues fulfill a convergence criteria.

Input: K, M, Vi, T}, and f; obtained after a k-step Lanczos Factorization
while convergence = false do

Compute the spectrum of T, and k — m "shifts" u1, po, - -+, fk—m;
H_ T.
q = ek; 3

forj=1,2,--- k—mdo
| Factor [Q, R] = qr (T}, — pi1); Ti. = QU TvQ; Vi = VkQ; ¢ = ¢7 Q;

end
Jr = Brvkg1 + [lal|as frs
ko =k—m;

Vie =Vie (1 :n,1: ko);

Beginning with the k-step Lanczos Factorization and apply m shifts to obtain a new
k-step factorization;

end

Algorithm 2: The implicitly restarted Lanczos algorithm
The convergence criteria adopted for Algorithm (2) was:
| filllefpl < tol - || (4)

where tol is a user supplied tolerance. For a more detailed description of the implicitly restarted
Lanczos method, the authors recommend [12] and [4].

In this work, we present a parallel implementation of implicitly restarted Lanczos Method
for distributed memory architectures. The proposed parallel implementation is based on a
subdomain by subdomain (SBS for short) approach and it is suitable for finite element codes
using compressed data structures to store the matrix coefficients. The SBS method is an
alternative to domain decomposition schemes and the main advantage of SBS method is that
both sequential and parallel codes are the same and thus the convergence remains unchanged.
Compressed data structures in the formats CSRC and CSRC/CSR [13] were employed for
storing global matrices of the finite element method. An example of structural dynamics is
presented in order to point out the applicability of the implementation.

2 PARALLEL IMPLEMENTATION

An efficient parallel FEM code should demand communication only in the solution phase. The
two mesh partitioning schemes that will be shown demand no communication during the as-
semblage of global matrices. In the non-overlapping scheme, this is acquainted keeping all
coefficients referring to the nodes lying in the internal boundary partially computed, while in the
overlapping partitions, all coefficients are global because all information needed to compute
the coefficients are available.

In the implicitly restarted Lanczos method, redundant work regarding to the tridiagonal ma-
trix eliminate the needed of communication during the restarting scheme. In practical situations,
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the total number of equations must be much greater than the order of the Krylov subspace and
in this case the redundant work is irrelevant. The generalized eigenvalue problem requires the
solution of a system of algebraic equations. In the symmetric case, the solution was obtained
with a parallel version of the PCG (Preconditioned Conjugate Gradient) method.

2.1 NON-OVERLAPPING PARTITIONING

In the non-overlapping partitioning scheme, the original domain 2 is sub-divided in n sub-
domains Q¢, (i = 0,...,n — 1), where n denotes the number of processes, in such way that,

n—1
0=J (5)
1=0
QNY =0Vi#j (6)

Let 092 the original boundary of Q. Q¢ is the boundary of Q¢. The closure of a partition is
given by QF = Q U 99Q°. The internal boundaries of € is represented by 9;,;.

Considering the mesh M, as a discretization of 2 and supposing that it is possible to obtain
a mesh of the non-overlapping partition Mg, C Mg, each subdomain Q° will contain a set formed
by nel’ element E¢ and a set N formed by nnode’ nodes,

N'={ni,ny,...,n; ..} (7)

Ei = {ezi’eé»---?€;eli} (8)
Each node located at 99, , belongs to a single partition, but it may appears in others par-
titions. So, the set N will be formed by three subsets: a subset N*!' formed by all nodes
belonging to the interior of Q¢ or placed at 9, a subset N2 of node placed at 99, , and be-
longing to the partition i and the last subset N formed by the nodes placed at 9Q¢,_, but each

int
node belongs to a partition j for all j # 4.
Ni — {Ni’l, Ni’2, Ni,S} (9)
The set formed by the nodes of the original mesh is given by:

n—1
N = [ J{N"!,N*?} (10)
=0

and the set of all nodes placed at 02;,,; is
n—1 4
NO%ne = | ] N*? (11)
i=0

Figure (1) shows schematically four non-overlapping partitions of a domain €.
The resulting global matrices obtained from a non-overlapping partition is given by:
Al Al Al
A = Ay Ahy Abg (12)
Az Ay Aj
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where the blocks Af,, A%,, Al,, A5, and A%, are globally computed, while the remaining blocks
have partially computed coefficients.

2.2 OVERLAPPING PARTITIONS

To define the overlapping partitioning scheme, a new set, namely N** formed by nodes of other
partitions is defined. Finally, the overlapping partition is obtained by the addition to the non-
overlapping partition mesh Mg, of a set E** = {ei}, j # i, formed by elements that connect
nodes belonging to N2 and N%*, the elements of an overlapping partition is given by:

E'={E'UE™} (13)

Ni — {Ni’l,Ni’z,Ni’S,NiA} (14)

For simplicity reasons, it should define a set N“'¢ ¢ N%! with nodes belonging to N/, for
some j # i. A overlapping partition is shown in Figure (2).

Global matrices resulting from overlapping partitions are rectangular and all its coefficients
are globally computed,

A Al Ay 0

A= i i i i
Ay Ay Aby Aby

(15)

2.3 PARALLELIZATION OF NUMERICAL LINEAR ALGEBRA OPERATIONS

The orthogonal projection procedure used in Krylov subspace methods may be implemented
using the Gram-Schmidt orthogonalization process. The main operations present in the im-
plicitly restarted Lanczos method can be classified, according to the amount of floating point
operations, in three level: inner products and vector updates belong to level one, matrix-vector
(matvec for short) operations are classified as level two and matrix-matrix product operations
belong to level three. Since all operations of the numerical linear algebra are reduced to the
three levels previously discussed, each level was parallelized as follows.

FIGURE 1: Example of a non-overlapping mesh partitioning scheme
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2.3.1 LEVEL1
In both non-overlapping and overlapping partitions, the inner product needed in the orthogo-
nalization process is performed in parallel with coefficients of type 1 and 2:

ol = _pi — it .pi,l + o2 _pi,2 (16)

The local products o' are accumulated in all processes after an execution of the MPI col-
lective communication routine MP|_ALLREDUCE:

a=Ya (17)

In non-overlapping partitions, vector updates are performed over coefficients of types 1,2
and 3 at the cost of some of some redundancy in terms of floating point operations due to
coefficients of type 3:

Uy Uy P
uh | = | uh | +a| ph (18)
U3 U3 p3

In the overlapping case, the same operation is carried out over the equations of type 1 and

In both cases, no communication is needed.

2.3.2 LEVEL2

Level 2 operations can be divided in two cases: the first case involves a sparse global coeffi-
cient matrix and a second case involves a dense matvec product present in the Krylov basis

13
jii

FIGURE 2: Example of an overlapping mesh partitioning scheme
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generation and in the matrices updates needed to restart the factorization.
In the non-overlapping method, the sparse matvec product is performed as follows:

i1 i i i i1
p Ay Al Al u
i2 | — i i i 0,2
i3 i i i 3,3
p Ay Asy Al U

Once this matvec product is performed, p»? and p*? are partially computed. In order to
advance in the itereative process, p“? and p** must be globally computed. Since neighbors
coefficients are complementary, communication must be carried out. The adopted point-to-
point communication scheme [14] is based in non-blocking MPI subroutines MPI_ISEND and
MPI_IRECYV and the received coefficients are mapped and accumulated in their correct posi-
tions.

In the overlapping case, the matvec product is performed as follows:

i1

U
pi71 _ Alll A’iQ A’ii’) 0 ui’Q (21)
ph? Alﬁ AéQ Alé?) Alé4 u'?

ud

The point-to-point communication in this case is very similar to the communication of the non-
overlapping case. Before the matvec product, the coefficients u*® and u** must be retrieved
form the neighbor partitions where they are coefficients of type 1a and 2. After communication,
a the received coefficients are mapped to their correct positions in vector » and then the matvec
operation is performed.

All level 2 operations involving the dense matrix Vi need no communication because the
columns of V}, are obtained after the sparse matvec product, this applies to both non-overlapping
and overlapping cases.

2.3.3 LEVEL3

In the restart scheme, level 3 operations must be performed in order to update 7 and V;.:

T=QTTQ (22)

V=vQ (23)

Recall that the matrix @ is a factor of T}, and since those matrices are replicated, no com-
munication is needed. As a penalty, redundant work is done but while the total number of steps
remains in a modest size, the amount of redundant work is irrelevant.

3 COMPRESSED DATA STRUCTURES

As mentioned before, the matrices K and M are symmetric and sparse. To take advantage of
sparsity, a compressed data structure was used to store the coefficients. The chosen CSRC
scheme [13] is a modified version of CSR [15], in which the lower part of both K and M (since
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K and M have the same graph) are stored by rows and the upper part is stored by columns. For
symmetric matrices only one array is used for storing the lower part. The diagonal elements are
stored in an array ad. The array ja of size nad (number of non-zero coefficients) contains the
column indices and the array ia of size neq + 1 (neq indicates the number of equations) points
to the first coefficient of each row. For symmetric matrices the matvec algorithm is shown in
Algorithm (3):
Input: ad, al, ja, ia, p, u
/* Loop over the equations: */
fori =1,neq do
wi = u(i);
t = ad(i) * ui;
/* Loop over the lower non-zero entries of equation i: */
for k = ia(i),...,ia(i+ 1) — 1 do
jak = ja(k);
s = al(k);
t=t+ sxu(jak);
/* Upper column: x/
p(jak) = p(jak) + s  ui;
end
p(i) = t;
end

Algorithm 3: Matvec product (p = Au) using CSRC
As shown in the previous section, overlapping partitioning results in rectangular global matrices.

For these cases, in order to perform the matvec product, the coefficient matrix is split and stored
in two formats: the square matrix is stored in CSRC format and the rightmost matrix is stored
in the classical CSR format. Algorithm (4) shows the matvec product performed in this format,
Input: ad, al, a, ja, jal ia, ial, p, u
/* Loop over the equations: */
fori =1,neq do
wi = u(i);
t = ad(1) * ui;
/* Loop over the lower non-zero entries of equation ¢: */
for k = ia(i),...,ia(i+ 1) — 1 do
jak = ja(k);
s = al(k);
t=t+ sxu(jak);
/* Upper column: */
p(jak) = p(jak) + s * ui;
end
for k = ial(i),ial(i +1) — 1 do
jak = jal(k);
t =t+ a(k) *u(jak);
end

Algorithm 4: Matvec product (p = Au) using CSRC/CSR
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4 RESULTS

In order to point out the potentialities of the presented implementation of IRLM, we solve two
generalized eigenvalue problems within the context of structural dynamics. This example was
simulated in a cluster with 32 nodes with Intel Core2Duo processors and 8Gb of RAM. The
nodes are connected by a 1 Gigabit switch and all machines have Fedora Linux as operating
system.

The 15 lowest eigenvalues and eigenvectors of a numerical model of a hydroelectric power
plant were calculated. A 60 steps Lanczos factorization was built and 2 implicitly restarts were
performed with a tolerance of 1 x 10~'3 . Figure (3) shows, in detail, the finite element mesh.

FIGURE 3: Mesh used in the symmetric example

Table (1) has a summary of the numerical properties of the model.

TABLE 1: Main information of the symmetric example

Number of elements 899,104
Number of equations 546,587
Number of iterations of the 5
Implicitly Restarted Lanczos method
Number of solutions of the algebraic 115

system of equations (PCG)

The speedups curves obtained for the global matrices assembling phase and the implicitly
restarted Lanczos method using non-overlapping and overlapping partitions are shown in Fig.
(4) . As mentioned in the previous section, in this phase no communication is needed and
superlinear speedups were obtained. Non-overlapping partitions obtained better speedups
because in the overlapping scheme there are redundant elements. For higher number of nodes,
superspeedups appear due to the fit of data in cache memory.

Figure 5 and 6 show the speedups curves for the PCG solver and the total speedup re-
spectively. First, one can note the solver speedups behaviour governs the implicitly restarted
Lanczos method and the total speedups because it is the most time consuming stage. It should
be mentioned that the number of iterations of the solver and the implicitly restarted Lanczos
method were independent of the number of processes. In this example, non-overlapping par-
titions were more efficient than overlapping partitions. Table (2) shows the highest speedups
obtained in each phase.
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FIGURE 4: Speedups curves for elements calculations and IRLM

TABLE 2: Maximum speedups obtained

Partitioning Scheme

Phase Speedup
(number of processes)
Global matrix assembling 37.41 Non-overlapping (32 nodes)
PCG 19.13 Non-overlapping (32 nodes)
Impl. restarted Lanczos. 19.12 Non-overlapping (32 nodes)
Total 19.13 Non-overlapping (32 nodes)
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Overlapping

e
/

30

N
= 7oy

25

20

X+

Speedup

15

10

15 20 35

Number of Nodes

25

FIGURE 5: Speedups for the PCG method

5 CONCLUSIONS

In this paper we presented a parallel implementation of the implicitly restarted Lanczos method
for the solution of generalized eigenproblems discretized by the finite element method. The
proposed parallel implementation is based in a subdomain-by-subdomain approach using com-
pressed data structures to store the global coefficients. As expected, the results have shown
that convergence of the implicitly restarted Lanczos method is independent of the number of
processes.The present implementation of the IRLM includes a shift invert spectral transfor-
mation suitable to enforce the convergence of the numerical eigenvalues/eigenvectors to the
desired spectrum as shown in the simulated example. The implicitly restarting technique main-
tained the number of steps in a modest size avoiding problems with memory requirements and
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orthogonality issues.

The adopted communication scheme, based in the MPI standard, is needed only during the
solution phase. In matvec operation, point-to-point communication procedure involving near-
est neighbor processes are performed. The examples have shown that non-overlapping and
overlapping partitioning schemes can be implemented with equivalent performance and in the
simulated examples, non-overlapping partitions had a slight better performance. Compressed
data structures in the formats CSRC and CSRC/CSR are very efficient in terms of memory us-
age allowing the solution of large sparse eigensystems in high performance computing. From
the timing results, it might be concluded that the present formulation is suitable for the solution
of large symmetric generalized eigensystems.
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