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ABSTRACT 
Agricultural soil tomography aims at investigating soil proprieties as water and solute 
transport, soil porosity, soil contents, root growing and humidity. For a better analysis 
about these proprieties, an image quality is required. The enhancement of 
tomographic images can be reached by the use of filters in their projections (signals) 
with the objective to reach a better signal/noise relation. Previous works focused on   
image filtering or in the use of filters specialized in Gaussian process estimation. 
These techniques not presented significant improvement in signal to noise relation 
and additionally have showed losses in image details. These projections have 
different types of noises affecting the image quality directly and omitting important 
details that can be recognized as if they were noise or fake details caused by noises. 
This paper presents formulations for the use of unscented Kalman filter with neural 
networks in a dual estimation filtering: a filter for state estimation and a filter for 
weight estimation with the objective of obtaining better quality in the signal / noise 
relation of tomographic projections. Besides the filter uses nonlinear functions, the 
square root technique also improves the performance and numerical stability 
compared with the basic unscented Kalman Filter.  The use of neural network applied 
to the square-root unscented Kalman filter showed significant results, as high ISNR 
values together with an image where details are kept.  

Keywords: Kalman filter, Artificial Neural Network, Tomography. 

I . INTRODUCTION 

Widely used in medical areas, the use of Computerized Tomography (CT) in 

soil science has been introduced by Petrovic, Siebert and Riek [1], Hainswoth and 

Aylmores [2] and by Crestana [3]. Petrovic has shown the possibility of using an X-

ray computed tomography to measure the density of soil volumes, while Crestana 

has demonstrated that CT can solve problems related to studies of the physics of 

water in the soil. From these studies, it led to a project involving the development of a 

tomography to soil science [4] [5]. The use of the computer tomography is essential 

for the image reconstruction from projections. 

The application of CT for the investigation of soil physics properties in grain 

and pore levels is important to the water and solute transport study in this 

environment, particularly in non saturate regions, as well as for the interaction 

investigations of  soil and roots. Combined with other conventional techniques as 
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neutrons probes, gravimetry, gamma and X-ray direct transmission, tracers, optical 

microscopy, electron microscopy scanning, mercury intrusion and other similar ones, 

it contributes greatly to resolve diverse problems of soil area. The results were 

obtained in a millimeter order scale, while various answers are expected in particle, 

macropore and micropore levels [6]. In the visualization of a tomographic image there 

is the presence of granularity, which is significant in the viewing of objects in low 

contrast. This granularity may be considered as a fake detail in image. 

Besides, the use of X-ray computer tomography requires, as its application, 

the use of digital filters. They are necessary since the studied signal is represented 

discretely and due to the ability to treat an adaptive approach to promote a best 

filtering. One of them is the Kalman filter. This mathematical tool developed based on 

concepts such as (hidden) Markov chains [7], Bayesian estimation among others. It 

has the ability to obtain future and hidden states given the observation and to 

improve with the other techniques of estimation. In this paper is used as artificial 

neural networks, but can be applied either in genetic algorithms. These filters are 

seen as extensions of nonlinear filters and changes are made directly in the 

equations for filter measurement and correction. 

The linear filtering main characteristic is the ability to make a prediction using 

a known linear function. For the discrete filter the translation matrix was used, where 

the difference from the future state and the current state is estimated. The observed 

value shall be the sum of these states after being corrected by the filter. The non-

linear filtering can be made through the use of a nonlinear function for this estimation. 

This is done with the use of neural networks that promote a non-linear mapping and 

the use of the filter to estimate the neural network weights.  

The Kalman filter is a mathematical tool widely used for statistical problems 

and is considered a good estimator for a large class of problems and an effective and 

useful estimator for other classes. In 1960, Rudolf Emil Kalman published an article 

describing a recursive solution to the problem of discrete data linear filtering. While 

there are several specific applications that are close to estimating an unknown state 

of a set of process measures, several of these methods do not inherently take into 

account the nature of the typical noise. For example, consider them working on a 

mapping for interactive computer graphics. While the requests for information vary 

with application, the key source of information is the same: estimate poses of 

measures that are derived from noisy electrical mechanical, inert, optical, acoustic or 
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magnetic sensors. This noise is statistically typical in nature (or can be effectively 

modeled well), which leads to stochastic methods to address problems. 

The techniques used in artificial intelligence and in estimation with Kalman 

filter are used to increase its filtering power to solve problems of higher orders. To 

determine the behavior of a function, it can use its own filter to perform a linear 

prediction or make a non-linear prediction using neural networks. 

The main source of noise in CT images is quantum mottle, defined as the 

spatial and temporal statistical variation in the number of X-ray photons absorbed in 

the detector. Other types of noise present in CT images are the rounding errors in the 

program of reconstruction (noise of the algorithm) and the electronic noise attributed 

by the system displays. Electronic noise can originate in not ideal electronic devices, 

such as not pure resistors and capacitors, not ideal terminal contacts,  current 

leakage transistors, Joule and can also be independent of the signal, such as 

external interference (electrical or even mechanical) [8] [9] [10] [11]. The low-pass 

filters and median are solutions to solve the problem of signal or noise, but there is 

loss of crucial information. Systems with different source noise do not have a solution 

with the use of filter. There is, therefore, the need for more use of filters complex that 

can be seen in [12] [13] [14], which also provide a comparison with a solution of 

using neural networks (pre-filter) with Discrete Kalman filter. 

This paper is regarding to understand the use of unscented Kalman filter 

(UKF) and the algorithm used to separate a noise from a signal. This will be done by 

showing that the unscented Kalman filter with neural network is the best option for 

filtering. It will be an overview and specified after each equation of the algorithm. 

The unscented Kalman filter is similar to the extended version [15]. The 

distribution of states is represented by a Gaussian random variable, but is now 

specified using a minimum of sampling point sets chosen carefully. The sampled 

points capture the true mean and covariance of random variable and when it 

propagates through a truly non-linear system, it captures the mean and covariance 

accurately to promote a third order estimation for any nonlinearity. Thus, this is done 

through the use of unscented processing.  

An unscented processing (Unscented Transform) is a method to calculate the 

statistics of a random variable  x  (with dimension L ), which can be understood as a 

noiseless free projection that, through a non linear function ( )y g x results in an 
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observed state or a noisy projection. Assuming x  has mean x  and covariance xP . 

To calculate the statistics of y , it must form a matrix X  with 2 1L  sigma vectors 

sigma ix (with weight iW ), according to the following: 

iX x       (1) 

( ( ) )i x iX x L P , for 1,...,i L     (2) 

( ( ) )i x iX x L P , for 1,...,2i L L        (3) 

( ) / ( )m
oW L       (4) 

( ) 2/ ( ) (1 )c
oW L          (5) 

( ) ( ) 1/{2( )}m c
i iW W L , for 1,...,2i L          (6) 

where 2 ( )L k L  is a scalar parameter. The variable determines the sigma 

points spreading around the mean x  and it is ever a minimal positive value. k is a 

secondary scalar parameter that is equal to 0 for a single state and equal to 3 L for 

weight estimation and  is used to incorporate the distribution a priori knowledge x 

(for Gaussian distributions, 2  is optimal). ( ( ) )x iL P  is the i-th square root 

matrix line. These sigma vectors are propagated through non linear function  

( )i iy g X  for 0,...,2i L     (7) 

and the  mean and covariance are approximate using sample mean and 

covariance of posteriors sigma points. 
2

( )

0

L
m

i i
i

y W y      (8)
 

2
( )

0
{ }{ }

L
c T

y i i i
i

P W y y y y .     (9) 
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Unscented Kalman filter algorithm 
Sigma points calculation: 

 1 1 1[ ( ) ]
a an a
k kk kX x x L P     (10) 

where X is the set of points with unscented transformation based on the mean and 

covariance a priori. 
Preview equations: 

2
( )

, | 1
0

L
m x

k i i k k
i

x W x      (11) 

where W(m) represents the set of sigma point weights used for true mean 

reconstruction. 
2

( )
, | 1 , | 1

0
[ ][ ]

L
c x x T

k kk i i k k i k k
i

P W x x x x     (12) 

where W(c) represents the set of sigma point weights used for true mean 

reconstruction. 

| 1 1 1( , )x x v
k k k kX F X X      (13) 

where F is the function for the sigma propagation for state transitions. 

Correction equations:  

| 1 1 1( , )x n
k k k kY H X X      (14) 

where H  is the system function for sigma points generation of observation states 

Y. 
2

( )
, | 1

0

L
m x

i i k kk
i

y W Y     (15) 

where y is the observed state estimation reconstructed for the sigma points. 
2

( )
, | 1 , | 1

0
[ ][ ]

k k

L
c T

i i k k i k kk ky y
i

P W Y y Y y     (16) 

2
( )

, | 1 , | 1
0

[ ][ ]
k k

L
c T

ki i k k i k k kx y
i

P W X x Y y     (17) 

1( )
k k k k

x y y y
K P P       (18) 

where K is the Kalman gain obtained through the noise covariances.   

( )k k k kx x K y y       (19) 

this equation represents the mean a priori correction and 

( )
k k

T
k k y y

P P K P K       (20) 

represents the covariance a priori correction. 
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This method differs from the general methods of sampling (Monte-Carlo 

methods such as particle filters), which require orders of magnitude with more 

sample points in an attempt to define and propagate the state (possibly non-

Gaussian) distributions. The unscented approaches result in more hits for the third 

order for Gaussian inputs for all nonlinearities. For non-Gaussian inputs, 

approximations are more reliable, at least for a second order, with the success of 

moments for third order or higher orders determined by the choices of  and . 

The unscented Kalman filter is a direct extension of unscented transformed for 

the equation recursive estimation 

( prediction of ) [ ( prediction of )]k k k k kx x K y y    (21) 

where the state of random variable is redefined with the concatenation of original 

states and noise: 

[ ]a T T T T
k k k kx x v n .      (22) 

The selection of sigma points is applied for a new random variable state to 

selection to calculate the corresponding sigma matrix a
kx . The unscented Kalman 

filter equations are given below. They do not need to calculate Jacobian or Hessians 

matrices, in addition, the calculation total numbers are the same of extended filters 

. The Kalman filter was originally designed to solve a problem of state 

estimation, and has been used in applications related to nonlinear controls that 

require feedback from the states. In these applications the dynamic model is a 

physically based parametric model, which assuming is known.  

Due to numerical instability related to the filter noise, and the use of the 

Cholesky factorization to determine the square root of probability matrix, Rudolph van 

der Merwe and Eric A. Wan have developed the square-root unscented Kalman filter 

(SRUKF) [16], which allows better control variance matrix values, bypassing the 

problem of becoming a negative or indefinite matrix. This new filter also provides an 

improvement in performance, leaving the unscented Kalman filter with the same 

order of complexity of the extended filter.  

As the original unscented Kalman filter, the square root filter is initialized by 

calculating the square root of covariance matrix states by the Cholesky factorization: 

0 0 0 0 0{ [( ^)( ^) ]}TS chol E x x x x           (23) 

Vetor, Rio Grande, v.18, n.1, p. 17-31, 2008. 22



However, the spread factor and the update of Cholesky is then made in 

subsequent iterations to directly form the sigma points. In the equation below, the 

update time of the Cholesky factor is calculated by using a QR decomposition of the 

matrix composed of the weight of the propagated sigma points and the square root of 

covariance matrix of the additive noise case: 

( ) *
1 1:2 , | 1{[ ( ) ]}c v

k L k k kS qr W X x R          (24) 

A subsequent update of Cholesky (or regression) in the equation below is 

needed since the weight zero is perhaps negative: 
* ( )
0, 0{ , , }c

k k k kS cholupdate S X x W     (25) 

These two steps replace the time update. They are also used in the calculation 

of the Cholesky factor, the error covariance of the observation:  

( )
1 1:2 ,{[ ( ) ]}c n

yk L k kS qr W Y y R      (26) 

( )
0, 0{ , , }c

yk yk k kS cholupdate S Y y W .    (27) 

Unlike the way in which the gain of Kalman filter is calculated in standard 

unscented, using two inversions: 

( )T
k yk yk k kK S S Px y        (28) 

Since it is square and triangular, efficient replacements can be used to solve it 

directly without the need for an inversion of the matrix. Finally, the Cholesky 

factoration update of the covariance factor of the state in the equation below is 

calculated by applying sequential Cholesky regressions  

{ , , }k kS cholupdate S U     (29) 

The vectors are the columns of the equation regression 19. This update 

replaces the rear equation 20 

k ykU K S       (30) 

With the knowledge of non-linear function of the process and a Kalman filter 

that supports non linear functions is possible to get a significant improvement in the 

signal. One solution is to use a neural network to promote a better function of the 

mapping process, reducing the noise present in the projections. For an estimation of 

the weights of the neural network together with the estimates of the states, we can 

use two methods of filtering: the estimation and dual estimation. These arrangements 
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for determining the filtering initial weights are known, the next state is obtained in a 

linear mapping with the previous one.  

Details of unscented Kalman filter implementations and modeling are shown in 

section 2. Section 3 presents a comparison of the results obtained by the filters. 

Finally, section 4 presents the conclusion. 

I I . METHODOLOGY 

The equipment utilized is a first generation mini-tomograph scanner developed 

at Embrapa Agricultural Instrumentation. The mini-tomograph data acquisition 

process provides a matrix with the sample values of projections. For the modeling 

process, it considers a matrix row that, by convention, is named sum ray. This signal 

is composed of various incidences with variable and non deterministic values, whose 

amplitude is given by 

 0[ ] d
mI n I e ,      (31) 

where d is the distance traveled  by the photon ray within the evidence body, µ is the 

attenuation coefficient,  Io is the free beam counting and Im is the projection n 

attenuated beam .  

This allows a filtering with a priori knowledge only in the previous variable. 

Thus, the transference and system matrices are reduced as:  

11

[ ] ( )1 1
( 1)0 1( 1)

i m

mm

P n I n m
I n mI n m   (32) 

1

[ ]
[ ] 1 0

( 1)
i

i

m

P n
P n

I n m        (33) 

Matrix [1 0] corresponds to matrix H of the system equation, which allows to power or 

to hide the observation states according to hidden Markov chains. This allows the 

filter to estimate states that are not visible outside the system.  

The Kalman filter can be a nonlinear function and train parameters (weights). 

There is then the possibility of using a mapping function with neural networks where 

the filter trains the neurons and moves to a stable system where the weights are 

estimated and the mapping function has the lowest error rate possible. This filter 

allows working with higher orders (with the accuracy equivalent to the expansion of 

third order Taylor series), while the filter, in its extended form, works only with second 

order functions.  
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With the knowledge of a non-linear function of the process and a Kalman filter 

that supports linear functions to get a significant improvement in the signal. One 

solution is to use a neural network to promote a better function of the mapping 

process, reducing the noise present in the projections. For a weight estimation of the 

neural network together with the states estimation, it is possible to use two methods 

of filtering: the state estimation and the dual estimation.  

The use of Hidden Markov Chains model to estimate weights of a neural 

network arose from the need to obtain an estimator for the Kalman filter that could 

map the nonlinear functions efficiently and better than the process of linearization 

(applied in translations) and merge other functions without the need to create several 

states to map a single behavior. These arrangements for determining the filtering 

initial weights are known, the next state is obtained in a linear mapping with the 

previous state. Thus, it has:  

1 ( , , )k k k kx f x W v     (34) 

Then, a Kalman filter to estimate the states and a Kalman filter to estimate the 

weights are used. This filtering allows the application in a system where the 

dynamics of status is unknown or chaotic (non-deterministic). Then it has a filtering 

system with dual estimation that can be written as: 

1 ( , , )k k k kx f x W v     (35) 

( , )k k kz h x n      (36) 

1k kW W      (37) 

( , , )k k k ky g x W m           (38) 

k k ke x y      (39) 

It can be used the two forms of Kalman filter for nonlinear systems to compose 

the dual. Despite being a more complete estimate, it is still prone to errors since the 

estimation of the signal observed is approximate. 

I I I . RESULTS AND DISCUSSION 

As the Kalman filter works on a white noise process it takes up the value of 

variance Q, which determines the degree of confidence in the process. To measure 

the quality of filtering, the ISNR variance was used based on the windows (ROIs) in 

reconstructed images. A negative ISNR (Improvement in Signal Noise Ratio) 
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indicates a loss of detail or deformation (presence of artifacts) in the final image. For 

the heterogeneous phantom,   five windows (ROIs) were used, where the presence 

of a negative value or a decrease of ISNR values indicate a lower quality of filtering. 

In the homogeneous phantom, a ROI of 42 X 28 pixels was used and in the 

heterogeneous phantom, five ROIs of 14 X 11 pixels were used to quantify the 

results obtained with the filters. For the last, a soil sample is used to validate the 

results. TABLE 1 presents test results to verify the relationship between ISNR and 

the quality of the signal and the image reconstructed with SRUKF. TABLE 2 shows 

the results of test ISNR values and the results of applying the filter with artificial 

neural network.  
TABLE 1 - Results obtained with the unscented Kalman filter and phantoms for calibration. The (1) 

is defined as homogeneous phantom and the (2) is defined as heterogeneous phantom. 

Q=1 
Max ISNR (dB) 

(1) (2) 
R=0.01 -0.57 4.52 4.43 4.63 1.82 3.96 

R=0.5 -0.81 4.52 4.43 4.63 1.82 3.96 

R=0.8 -0.59 4.52 4.43 4.63 1.82 3.96 

R=1 -1.88 4.52 4.43 4.63 1.82 3.96 

R=5 -2.76 4.52 4.43 4.63 1.82 3.96 

R=10 -0.17 4.52 4.43 4.63 1.82 3.96 

R=15 -2.40 4.52 4.43 4.63 1.82 3.96 

R=20 -0.40 4.52 4.43 4.63 1.82 3.96 

 

By analyzing the values of the table, it may experience a drop in the ISNR 

homogeneous phantom due to the presence of peaks in the image. These peaks 

may be originated of the reconstruction algorithm itself or even by the presence of 

other mechanical noises. The filter is stable because the Poisson noise is more 

influential than the white noise in high counts of photons.  

The best result with a homogeneous phantom was with the system variance 

value of 10, while the heterogeneous phantom was stable for any value of the 

variance. The system filtering of white noise was effective for both samples and the 

drop in value of ISNR in homogeneous phantom is due to the estimation of future 

states of the filter match the noise in the samples. The results obtained by applying 
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the filter to the phantoms can be seen in FIGURE 1.  
TABLE 2 - Results obtained with the unscented Kalman filter with neural networks and phantoms 

for calibration. . The (1) is defined as homogeneous phantom and the (2) is defined as heterogeneous 

phantom. 

Q=1 
Max ISNR (dB) 

(1) (2) 
R=0.01 4.75 2.31 1.91 2.35 1.24 1.67 

R=0.5 6.63 5.11 4.31 5.34 2.81 3.86 

R=0.8 6.77 6.53 5.64 6.86 3.85 5.03 

R=1 6.73 7.37 6.31 7.74 4.34 5.68 

R=5 7.62 10.86 8.69 11.13 2.30 8.38 

R=10 7.91 13.92 10.88 13.76 -0.73 12.52 

R=15 7.65 16.73 12.66 15.84 -1.85 16.14 

R=20 7.05 19.01 14.13 17.38 -2.47 14.95 

 

Noting the filtered projections, it is possible a more consistent and stable 

filtering. Looking at the variance of pixel values in the reconstructed image of the 

homogeneous phantom, we find a concentration of values in a lower range, even 

with the presence of pixels with different values (darker). The heterogeneous 

phantom showed better stability, the samples are well defined within the body 

studied. As the filter can accurately estimate the noise affecting the states of the 

observation process and the results show better details. A multi-layer perceptron 

neural network is used with 2 neurons in a hidden layer and 1 neuron in an output 

layer.  

The filter with unscented estimation proved to be stable for the homogeneous 

phantom, with little different values. The same result was not reached with the 

heterogeneous phantom in that it is possible to repair the distortion and loss of detail 

due to the simplicity of the neural network applied.  

There was an improvement in higher values obtained by the filter, due to the 

efficiency of the unscented algorithm. The higher values represent a greater fall in 

the variance value in the regions of interest, demonstrating a better filtering. 

The tests with the unscented filter and neural networks provided a better result 

than the extended filter, despite the distribution of values of ROIs be differentiated. 

This delay is due to the convergence of the network signal. 
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FIGURE 1  Results using the square-root Kalman filter. In the first column the original projections are 

represented, together with their respective reconstructed images. In the second column, it is possible 

to see the obtained results using a canonical observed model and last column shows the use of the 

filter in dual estimation mode. 

The results were as expected and have, to some extent, the same visual 

results for the implementation of unscented and basic filters, proving that the 
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characteristics of Poisson noise can be mapped by a neural network, where the 

complexity to understand the process of equations deeply can be replaced by an 

iterative intelligent system, able to find new sensor features over time (difference in 

temperature, equipment aging and new mechanical structures). The results with soil 

sample show the dual estimation can reach a better image due to the presence of 

image details and no blurring effects in the sand grains. 

I V . CONCLUSION 

The unscented Kalman filter uses the resources for the creation of sigma 

points in the mean and around it, making a better mapping of the variance behavior 

excluding the need for calculations with matrices of linearization.  The filter 

implemented in this work has several feature clusters: Increased use of covariance, 

which allows working with the signal, noises and process and system noise variances 

at the same time, allowing noise estimation, something that does not happen with the 

other Kalman filters; Use the type of filter to square root, which using the Cholesky 

factoration allows greater stability of the filter concerning the noise and a gain in the 

filter order; Freedom to use the algorithm without the need for a priori knowledge of 

the response functions;Accuracy equivalent to third-order functions without the need 

for neural networks.  

Despite the use of a translation function be something simple and perhaps 

more suitable for a range of problems, due to the processing time and memory 

required, the Kalman filter with neural network replaces the old algorithms with these 

techniques due to the minimal use of layers and number of neurons in these layers. 

In addition, the use of the dual estimation modifies the initial intense training, what 

not always guarantees the convergence and adaptability to a better result and proves 

that a translation function implemented in the model of hidden Markov chains is not 

so efficient as the use of this model to identify the weights. 

As the unscented Kalman filter, it allows the mapping functions for the use of 

higher orders through the mapping of the mean and variances by the sigma points, 

without the use of linearization by Jacobian and Hessian matrices. 

The use of neural networks with this filter type allows mapping any function, 

with precise estimation of results. Additionally, by checking the results of the 

unscented Kalman filter with neural networks in phantoms, it was possible to observe 
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the efficiency of the filter to adapt to the chaotic features, such as heterogeneities 

normally present in real samples. 

As a pre-filtering, maintaining details in an image should be the most important 

objective. 
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