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ABSTRACT 

The aim of this work is to model a jet diffusion flame, to show the corresponding 

proof of existence of solutions, and to present the numerical results. The model is 

based on the flamelet equations for the chemistry and on the mixture fraction for the 

flow. Numerical tests are carried out for Sandia Flame D and the results are found to 

compare well with available data in the literature. 
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1. INTRODUCTION 

 

Combustion corresponds to a complex sequence of chemical reactions between a 

fuel and an oxidizer, producing heat and sometimes light too. It is well known that 

combustion not only generates heat, which can be converted into power, but also 

produces pollutants such as oxides of nitrogen ( xNO ), soot, and unburnt 

hydrocarbons (HC ). In addition, unavoidable emissions of 2CO  are believed to 

contribute to the global warming [9]. 
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The flames can be classified as premixed, nonpremixed and partially 

premixed, being laminar or turbulent. For example, the combustion in homogeneous 

charge spark-ignition engines or in lean-burnt gas turbines occurs under premixed 

conditions. In contrast, combustion in a diesel engine or in furnaces essentially takes 

place under nonpremixed or partially premixed conditions. Most of the applications of 

technical interest in combustion involves nonpremixed turbulent flames [16]. The jet 

diffusion flame is an important example of nonpremixed flames. 

In diffusion (nonpremixed) flames the fuel and the oxidizer enter the domain in 

separate streams. If the fuel and the oxidizer velocities are small (low Reynolds) the 

mixture among fuel, oxidizer and products of combustion will be basically by 

diffusion, establishing a laminar diffusion flame. However, if the velocity is high, for 

high Reynolds, the mixture occurs due to the transport of mass characterizing the 

turbulent flux. 

When the burner dimensions are much larger than the fuel jet diameter, of a 

jet diffusion flame, the heat losses to the walls are usually small and the contribution 

due to radiation turns negligible; radiation turns more important in furnaces, 

spreading of buildings and forest fires [4]. 

When a chemically reacting flow is considered, the system at each point in 

space and time is completely described by the specification of its pressure, density, 

temperature, velocity, and concentration of each species. These properties can 

change in time and space. These changes are the result of fluid flow, chemical 

reaction and molecular transport. A mathematical description of flames, therefore, 

has to account for each of these processes [16]. The flamelet equations correspond 

to a balance among the unsteady changes, the diffusive effects and the chemical 

reactions. Then the species mass fraction iY  depend on the mixture fraction, on the 

scalar dissipation rate and on the time. 

In this work we develop the flamelet model, we present results about the 

existence of solutions for the Lagrangian and the Eulerian flamelet models and show 

some numerical results for the Sandia Flame D. 
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2. GOVERNING EQUATIONS AND THE FLAMELET MODEL 

 

The governing equations for combustion processes, in the gas phase, include the 

balance equations for mass, momentum, energy and chemical species [18]. 

We introduce the Lewis number as 
ip

i Dc
Le ρ

κ= , ni  ..., ,2 ,1= , where κ  is the 

thermal conductivity, pc  is the specific heat capacity at constant pressure of the 

mixture, ρ  is the density of the fluid, and iD  is the diffusivity of each species i . For 

methane flames we consider that the diffusivity and the temperature of all species 

are the same, and therefore the Lewis number of all species is equal to one [8]. 

The Favre averaging governing equations for a jet diffusion flame are the 

following: 
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Mass Fraction 
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Mixture Fraction 
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Temperature 
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where ‘~’ denotes the Favre averaged variables. Here, ju  is the velocity vector, ijτ  

viscous stress tensor, iY  mass fraction of each species i , iw&  reaction rate of the 

species i , Z  mixture fraction, T  temperature and ih  specific enthalpy. The ρ  and p  

denote the mean values of the density and pressure, respectively. The eR  is the 

Reynolds, cS  the Schmidt and eP  the Peclet numbers; the t  is the time, Tµ  eddy 

viscosity and pc  heat capacity. 

The reaction rate of species i  may be modeled as 
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where iν  is the stoichiometric coefficient of the component i , iW  the molecular 

weight of species i , A  the frequency factor, E  the total activation energy, and R  the 

gas constant. 

The Eq. (3) does not contains any source term, since Z  represents the 

chemical elements originally contained in the fuel, and these are conserved during 

the combustion. We assume that the mixture fraction Z  is a space and time function. 

The combustion occurs in a fine layer of this surface if the Damköhler number 

is elevated. We introduce an orthogonal coordinate system txxx  , , , 321 , where 1x  is 

normal to the surface ( ) stZtxZ =,α . We change the coordinate 1x  by mixture fraction 

Z  and 2x , 3x , t  by 2Z , 3Z , τ , respectively. So, the temperature T  and the mass 

fractions iY  can be expressed as functions of the mixture fraction Z . By definition, 

the new coordinate Z  is locally normal to the surface of stoichiometric mixture [8]. 

Consider the transformations 
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After neglecting high order terms, results the equations for the mass fraction 

and the temperature in the mixture fraction space (in the flamelet form) 

(9)   i
i

i

i w
Z

Y

Le

Y
&=

∂
∂

−
∂
∂

2

2

2

χρ
τ

ρ , 

(10)   ∑
=

=
∂
∂

−
∂
∂ n

i

iipp wh
Z

T
c

T
c

1
2

2

2
&

χ
ρ

τ
ρ , 

where 
2

2 







∂
∂=

kx
ZDχ  is the instantaneous scalar dissipation rate. 

The equations for the mixture fraction and the temperature may be 

conveniently written in the nondimensional form as 
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where aD  is the Damköhler number, eZ  is the Zel'dovich number and eH  is the heat 

release rate. 

In the following we discuss the existence of solutions for the mass fraction and 

the temperature equations in the flamelet form. The proof of the existence is given by 

Faedo-Galerkin method. 

 

 

 

3. EXISTENCE OF SOLUTIONS 

 

Starting with the incompressible flamelet equations, an appropriate transformation 

[10] leads to the Lagrangian or to the Eulerian flamelet models for the mass fraction 

equation, as follows: 

Lagrangian Flamelet Model 
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Eulerian Flamelet Model 
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where the time τ  is defined in the coordinate system attached to the stoichiometric 

surface. 

In the Eulerian system both the velocity vector and the scalar dissipation rate 

are functions of time, space and mixture fraction. Moreover, the velocity and the 

scalar dissipation rate are fluctuating quantities in a turbulent flow field. 

The equations (13) and (14) may be rewritten in a general form, respectively 

as 
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To prove the existence of solutions for the Lagrangian and the Eulerian 

flamelet model equations, we consider a bounded open Lipschitz set Ω  in 3R  and 
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fixed 0* >t . We consider also that ( )ΩD  is a space of functions ∞C  with compact 

support contained in Ω , H  the closure of D  in ( )Ω2L  and V  the closure of D  in 

( )Ω10H  [2], [3], [7], [14]. H  and V  are the Hilbert spaces associated, respectively, 

with the scalar products 
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and 'H  is the dual space of H , 'V  is the dual space of V . As the scalar products of 

Hf ∈  and Vu∈  in H  is the same as the scalar product of f  and u  in the duality 

between 'V  and V , ( )ufuf ,, =  for all Hf ∈  and Vu∈ . Moreover, for each Vu∈ , 

the form ( )( ) RvuVv ∈→∈ ,  is linear and continuous on V  and there exists an 

element Au  of 'V  such that ( )( )vuvAu ,, =  for all Vv∈ . 

We intend to find a vectorial function [ ] 3*,0: Rtu →×Ω  such that 
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for the Eulerian case, where the functions f  and h  are given and defined in 

[ ]*,0 t×Ω , and 0u  is given and defined in Ω . 

Consider now the Lagrangian flamelet model equations. Assuming that u  is a 

classical solution, we have that ( )QCu 2∈ . If v  is an element of D , then 

(23)   ( )( ) ( )vfvuv
t

u
,,, =+








∂
∂

ν . 

Due to continuity, this equation is valid for each Vv∈ . Therefore, we obtain a 

weak formulation of this problem, that is, given f  and 0u  with ( )';,0 *2 VtLf ∈  and 

Hu ∈0 , we will find u  satisfying 

(24)   ( )VtLu ;,0 *2∈ , 
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(25)   ( ) ( )( ) vfvuvu
dt

d
,,, =+ν , Vv∈∀ , 

(26)   ( ) ( )ZuZu 00, = . 

After rewriting this problem in a convenient way, we obtain the following result: 

 

Theorem: Let ( )';,0 *2 VtLf ∈  and Hu ∈0 . Then, there exists at least one 

function u  which satisfies 

(27)   ( )VtLu ;,0 *2∈ , ( )';,0' *2 VtLu ∈ , 

(28)   fAuu =+ν'  in ] [*,0 t , 

(29)   ( ) ( )ZuZu 00, = . 

 

The proof of the theorem follows the Faedo-Galerkin method [6]. The result of 

the existence of solutions for the Eulerian Flamelet model equations is found in a 

similar manner. 

 

 

 

4. NUMERICAL SOLUTIONS VIA LARGE EDDY SIMULATION 

 

The solution of the Navier-Stokes equations for turbulent flows demands a great 

amount of computational time, because the resolution of the small scales in turbulent 

flows needs far more grid points than does the analogous laminar flow. In practice, a 

full solution of the Navier-Stokes equations for turbulent reacting flows is not yet 

possible [16]. 

The LES is a very attractive tool for numerical simulations of fluid flows. The 

idea is to explicitly compute the largest structures of the flow field, typically the 

structures larger than the computational mesh size, whereas only the effects of the 

small ones are modeled [15]. LES for reacting flows allows more precise 

computations of turbulent flames but also opens new perspectives to compute the 

interaction between combustion and acoustics, especially combustion instabilities, 

which are a serious problem in many combustion devices. LES is especially well 

adapted to the study of these phenomena, which are controlled by large scale 

vortices, explicitly captured in LES [17]. 
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In the following we indicate some numerical results for jet diffusion flames 

obtained using LES and we compare them with available experimental data found in 

the literature. 

 

 

 

4.1. Numerical Results 

 

The jet flame is chosen because it represents the class of nonpremixed flames. To 

build a burner one can surround a high velocity jet of gas fuel with an annular pilot 

flame of lower velocity [5]. 

Those experimental flames which are well-defined and well-documented are 

used for comparison  of the numerical values. Among the piloted flames, it seems 

that flame D is preferred [1], [11], [12], [13] when doing the comparisons because 

high Reynolds number is desired for model validation. Sandia flame D consists of a 

main jet with a mixture of 25% of methane and 75% of air. This jet is placed in a 

coflow of air and the flame is stabilized by a pilot. 

Consider the burner as shown in FIGURE 1. The duct has a cylindrical cross 

section with 1=eD  and a cylindrical tube that injects fuel with 025.0=d ; the tube of 

the coflow has a diameter 0267.0=D  and the burner length is 11=L . The number of 

grid points was taken as 5151199 ××  for flame D in the ( )zyx ,,  directions, 

respectively; x  corresponds to the axial direction. 

 
FIGURE 1. Burner sketch. 
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FIGURE 2. Comparison with experimental data [1] for the mixture fraction (left) and temperature (right) 

profiles along the burner centerline. 

 

 

 

5. CONCLUSIONS 

 

In this work we obtain the model for the solution of jet diffusion flames and we 

established the problem of existence of solutions for the Lagragian and Eulerian 

flamelet model equations, based on the Faedo-Galerkin method. In addition, we 

present some numerical results for a turbulent piloted methane-air diffusion flame, 

the Sandia Flame D. 

The LES results for the nonpremixed reacting flow, for Sandia Flame D, 

compare well with the available data found in the literature. The method, based on 

the low Mach number with a density relaxation, helps to obtain good results. One 

spends about 240 minutes to obtain the results in an Acer Aspire 5570-2792 Intel 

Pentium dual-core notebook of 1.60 Ghz and 1MB L2 cache. 

The authors show that the appropriate choose of the mathematical model 

helps the development of proofs for the existence of solutions for diffusion flames. 
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Such and the comparison of numerical and experimental values with experimental 

data correspond to the main contributions of the present paper. 
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