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Abstract 

 

Beams resting on elastic foundations are widely used in engineering projects, so analyzing their displacement fields 

is very important. The present work presents solutions for the deflection of isotropic beams resting on elastic 

foundations of the Winkler-Pasternak type. The proposed formulation is based on the Euler-Bernoulli beam theory, 

and the governing equations and the boundary conditions are derived from the principle of virtual work. The direct 

integration method can decouple the deflections from axial displacement and twists. The system of deflection 

equations decouples into two principal directions and is transformed into a first-order system. The solution of this 

system of equations is obtained through the method of variation of parameters. When analyzing the results of the 

maximal deflections, it is observed that increasing values of the foundation stiffness provide decreasing deflections 

and that the influence of the Pasternak parameter is more significant on the results than that of the Winkler 

parameter. 
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Resumo 

 

Vigas apoiadas em fundações elásticas são amplamente utilizadas em projetos de engenharia, logo analisar os 

deslocamentos sofridos por elas é muito importante. Por isso, o presente trabalho apresenta soluções para a deflexão 

de vigas isotrópicas sobre fundações elásticas do tipo Winkler-Pasternak. A formulação proposta é baseada na teoria 

de vigas de Euler-Bernoulli e as equações que descrevem o problema e as condições de contorno são derivadas do 

princípio do trabalho virtual. O método de integração direta é utilizado para desacoplar as deflexões do 

deslocamento axial e da torção. O sistema de equações desacopladas de deflexão em duas direções principais é 

transformado em um sistema de primeira ordem. A solução deste sistema de equações é obtida através do método 

de variação de parâmetros. Ao analisar os resultados das deflexões máximas, observa-se que com o aumento dos 
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valores de rigidez de fundação, os deslocamentos de flexão diminuem e que o parâmetro de rigidez de Pasternak 

tem maior influência aos resultados que a rigidez de Winkler. 
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Teoria de Euler-Bernoulli    Vigas Isotrópicas    Fundações Winkler-Pasternak  

 

1 Introduction 
 

As there is transmission of efforts from the infrastructure to the superstructure, it is important to analyze the effects 

of the soil in the structural analysis. For this, there are physical models that try to describe the behavior of the base 

when subjected to a load, such as the models proposed by Winkler and Pasternak in 1867 and 1954, respectively [1]. 

According to Doeva, Masjedi and Weaver [2], the structural analysis of beams supported on elastic foundations 

attracts a lot of attention, and therefore, there are several analytical and numerical solutions to the problem in the 

literature. However, the vast majority of them are based on complex series techniques and are limited to specific 

boundary types or loading conditions. 

In order to get around these problems, Doeva, Masjedi and Weaver [2] proposed a methodology for building 

analytical solutions for bending composite beams using the Euler-Bernoulli theory based on two-parameter elastic 

foundations. For this purpose, variational principles and fundamental matrices were used. To reduce the fourth-

order terms that appear in the equations describing bending to first order, a grouping is performed between the 

transverse displacement fields in the thickness and width direction, and a second grouping composed of axial 

displacement and rotation. Thus, it is possible to build the fundamental matrices to obtain the analytical solution 

of the method of variation of parameters. The results were validated using the Chebyshev collocation method. 

In [2], displacement results were presented for simply supported and clamped isotropic beams under uniformly 

distributed load on a Winkler-Pasternak elastic foundation, but the analytical solutions were not presented.  

Thus, this work seeks to present the analytical solutions for the structural behavior when considering or not the 

elastic foundation through the methodology proposed by Doeva, Masjedi and Weaver [2]. Furthermore, the 

displacements for a cantilevered Euler-Bernoulli beam under point load at the free end and on a Winkler-Pasternak 

elastic foundation from this methodology are presented for the first time. 

 

2 Mathematical Modeling 
 

Consider a beam on an elastic foundation characterized by two parameters, namely, Winkler stiffness modulus  𝑘ᅠ 

and Pasternak shear modulus 𝑘ᅗ. The beam has length 𝑙, width 𝑏 and height ℎ, whose origin of the coordinate 

system is located on the axis of the beam, as shown in Fig. 1. Thus, (𝑥, 𝑦, 𝑧) ∈ [0, 𝑙] × Ԯ−
ᅆ

Ⴓ
,

ᅆ

Ⴓ
Ժ × Ԯ−

ᅍ

Ⴓ
,

ᅍ

Ⴓ
Ժ. 

 

 
 

Figure 1: Beam on a two-parameter elastic base. 

 

2.1 Winkler-type and Pasternak-type foundation models 
 

Beams can be studied as structures that are in contact with a continuous medium. In order to simplify the analyses, 

this medium can be considered as an elastic base. Two of the models proposed for this are the Winkler-type 

foundation and the Pasternak-type foundation proposed in 1867 and 1954, respectively. Each model describes the 
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behavior of the soil when subjected to loading and deduces the mathematical formulation derived from the physical 

model [3]. 

According to Selvadurai [1], the Winkler-type foundation model assumes that the stress applied at a point of the 

foundation is proportional to the transverse displacement suffered by this point and that the particles that make up 

the base behave like linear springs disconnected from each other. In order to combat the discontinuity at the 

interface between the loaded and unloaded regions of the Winkler model, the Pasternak foundation model proposes 

the interaction of the loaded region and its surroundings through the shear effect on the elastic elements. 

 

2.2 Kinematic model for Euler-Bernoulli beam 
 

One of the theories that describe displacements in beams is the Euler-Bernoulli model, which is the simplest and 

most used. The Euler-Bernoulli theory, when adopting a displacement field, hypothesizes that a straight line normal 

to the neutral surface remains straight and normal to it after the part is deformed [4]. 

According to Luo [5], the displacement of any point in the cross-section consists of the displacement of the rigid 

body on the reference line and the rotation of the cross-section of the beam. Therefore, it is possible to describe the 

components of the displacement field as 

 

 𝑈ᅢ(𝑥, 𝑦, 𝑧) = 𝑢(𝑥) + 𝑧𝜃ᅣ(𝑥) − 𝑦𝜃ᅤ(𝑥) , (1) 

 𝑈ᅣ(𝑥, 𝑦, 𝑧) = 𝑣(𝑥) − 𝑧𝜑(𝑥) , (2) 

 𝑈ᅤ(𝑥, 𝑦, 𝑧) = 𝑤(𝑥) + 𝑦𝜑(𝑥) , (3) 

 

where 𝑈ᅢ(𝑥, 𝑦, 𝑧) , 𝑈ᅣ(𝑥, 𝑦, 𝑧)  and 𝑈ᅤ(𝑥, 𝑦, 𝑧)  are the components of the displacement vector; 𝑢(𝑥)  is the axial 

displacement of the beam in the 𝑥 direction; 𝑣(𝑥) and 𝑤(𝑥) are the transverse displacements of the beam in the 𝑦 

and 𝑧 directions, respectively; and 𝜑(𝑥), 𝜃ᅣ(𝑥) and 𝜃ᅤ(𝑥) are the rotations of the beam cross-section around 𝑥, 𝑦 and 

𝑧, respectively. The rotations and displacements are related according to 

 

 𝜃ᅣ = −𝑤′ , 𝜃ᅤ = 𝑣′ . (4) 

 

The number of lines superscribed to the displacements represents the order of the derivative with respect to 𝑥. 

According to Luo [5], it is possible to adopt the relation between deformation and displacement as linear when 

assuming that the deformations are small. Thus, the components of the beam strain field can be expressed as 

 

 𝜀ᅢᅢ =
∂𝑈ᅢ

∂𝑥
= 𝑢ᆣ + 𝑧𝜃ᅣ

ᆣ − 𝑦𝜃ᅤ
ᆣ , (5) 

 
𝛾ᅢᅣ =

∂𝑈ᅢ

∂𝑦
+

∂𝑈ᅣ

∂𝑥
  =  (𝑣ᆣ − 𝜃ᅤ) − 𝑧𝜑′ =  −𝑧𝜑′, 

(6) 

 
𝛾ᅢᅤ =

∂𝑈ᅢ

∂𝑧
+

∂𝑈ᅤ

∂𝑥
 =  (𝑤ᆣ + 𝜃ᅣ) + 𝑦𝜑ᆣ  =  +𝑦𝜑ᆣ, (7) 

 

where 𝜀ᅢᅢ is the strain in 𝑥 and 𝛾ᅢᅣ and 𝛾ᅢᅤ are strains in the 𝑥𝑦 and 𝑥𝑧 planes, respectively. 

 

2.3 Internal work, external work and elastic work 
 

The principle of virtual work for a beam on an elastic foundation is composed of the internal work, the external 

work, and the work caused by the elastic foundation [2]. Therefore, in this case, the principle of virtual work is  

 

ڣ  ԕ𝛿𝑊 ᅎᅕᅛ + 𝛿𝑊 ᅊ − 𝛿𝑊ᅉᅢᅛԡ𝑑𝑥 = 0
ᅓ

Ⴑ

, (8) 

 

where 𝛿𝑊 ᅎᅕᅛ , 𝛿𝑊 ᅊ  and 𝛿𝑊ᅉᅢᅛ  are the variations of the internal, elastic foundation, and external works, 

respectively. 

The stress on the beam under study is caused by bending in two main directions (𝑦 and 𝑧), by axial displacement, 

and by torsion. Therefore, according to Doeva, Masjedi and Weaver [2], the internal forces and moments in the 

beam can be calculated as 
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 𝐹ᅢ = ڣ 𝜎ᅢᅢ𝑑𝐴
 

ᄫ

, 
(9) 

 
𝑀ᅢ = ڣ (𝑦𝜎ᅢᅤ − 𝑧𝜎ᅢᅣ)𝑑𝐴

 

ᄫ

, 
(10) 

 
𝑀ᅣ = ڣ 𝑧𝜎ᅢᅢ𝑑𝐴

 

ᄫ

, 
(11) 

 
𝑀ᅤ = − ڣ 𝑦𝜎ᅢᅢ𝑑𝐴

 

ᄫ

. 
(12) 

 

Thus, the variation of the internal work can be obtained according to Eq. (13). Vectors and matrices are 

expressed in bold for a better visualization. 

 

ڣ  𝛿𝑊 ᅎᅕᅛ𝑑𝑥 = ڣ  𝛿𝝐ᄾ𝑵
ᅓ

Ⴑ

𝑑𝑥 = ڣ  𝛿𝝐ᄾ𝑺𝝐
ᅓ

Ⴑ

𝑑𝑥
ᅓ

Ⴑ

, (13) 

 

where 𝝐 is the strain vector, 𝑵 is the vector of internal forces and moments, and 𝑺 is the stiffness matrix, such that 

 

 𝝐 =

⎣
⎢
⎢
⎢
⎡

𝜀ᅢ

𝑘ᅢ

𝑘ᅣ

𝑘ᅤ⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎡

𝑢ᆣ

𝜑ᆣ

−𝑤ᆣᆣ

𝑣ᆣᆣ ⎦
⎥
⎥
⎤

, 𝑵 =

⎣
⎢
⎢
⎢
⎡

𝐹ᅢ

𝑀ᅢ

𝑀ᅣ

𝑀ᅤ⎦
⎥
⎥
⎥
⎤

, 𝑺 =

⎣
⎢
⎢
⎢
⎡

𝑆ᄯᄫ 𝑆ᄯᄾ

𝑆ᄯᄾ 𝑆ᄱᄴ

𝑆ᄯᄰ 𝑆ᄯᄶ

𝑆ᄰᄾ 𝑆ᄶᄾ

𝑆ᄯᄰ 𝑆ᄰᄾ

𝑆ᄯᄶ 𝑆ᄶᄾ

𝑆ᄯᄳቜ
𝑆ᄰᄶ

𝑆ᄰᄶ 𝑆ᄯᄳቝ⎦
⎥
⎥
⎥
⎤

, (14) 

 

where 𝑆ᄯᄫ is the extensional stiffness, 𝑆ᄱᄴ  is the torsional stiffness, 𝑆ᄯᄳቜ
 is the out-of-plane bending stiffness, 𝑆ᄯᄳቝ

 

is the in-plane bending stiffness, 𝑆ᄯᄾ  is the coupling between axial displacement and torsion, 𝑆ᄯᄰ  is the coupling 

between out-of-plane bending and axial displacement, 𝑆ᄯᄶ is the coupling between in-plane bending and axial 

displacement, 𝑆ᄰᄾ  is the coupling between out-of-plane bending and torsion, 𝑆ᄶᄾ  is the coupling between bending 

and in-plane torsion and 𝑆ᄰᄶ is the coupling between out-of-plane and in-plane bending. 

The variation of the external work 𝛿𝑊ᅉᅢᅛ is calculated as 

 

ڣ  𝛿𝑊ᅉᅢᅛ𝑑𝑥 ڣ = 𝛿�֑�ᄾ𝑸
ᅓ

0

𝑑𝑥
ᅓ

0

, (15) 

 

where �֑�  is the vector of generalized displacements (translations and rotations), and 𝑸 is the vector of distributed 

loads, given by 

 

 �֑� =

⎣
⎢
⎢
⎢
⎡

𝑢(𝑥)

𝜑(𝑥)

𝑤(𝑥)

𝑣(𝑥)⎦
⎥
⎥
⎥
⎤

, 𝑸 =

⎣
⎢
⎢
⎢
⎡

𝑞ᅢ(𝑥)

𝑞ᆕ(𝑥)

𝑞ᅤ(𝑥)

𝑞ᅣ(𝑥)⎦
⎥
⎥
⎥
⎤

, (16) 

 

where 𝑞ᅢ(𝑥), 𝑞ᅣ(𝑥) and 𝑞ᅤ(𝑥) are the distributed loads and 𝑞ᆕ(𝑥) corresponds to the distributed torque. 

Finally, according to Robinson and Adali [6], the variation of the work due to the Winkler-Pasternak elastic 

foundation is given by 

 

ڣ  𝛿𝑊 ᅊ𝑑𝑥 = ڣ  (𝛿𝑤 𝑘ᅠ 𝑤 +  𝛿𝑤′ 𝑘ᅗ 𝑤′)
ᅓ

Ⴑ

𝑑𝑥
ᅓ

Ⴑ

. (17) 

 

2.4 System of equations that describe the problem 
 

The system of ordinary differential equations that represents the problem can be built using the variational 

principles to obtain Euler's Equation [7]. Then, from the fundamental lemma of the variational calculus to obtain 

the governing equations, that is, substituting Eqs. (13), (15), and (17) into Eq. (8), integrating by parts and collecting 

the coefficients of 𝛿𝑢, 𝛿𝜑, 𝛿𝑤, 𝛿𝑣, 𝛿𝑤′ and 𝛿𝑣′, the system of governing equations can be obtained as  
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 −𝑆ᄯᄫ𝑢ᆣᆣ − 𝑆ᄯᄾ𝜑ᆣᆣ + 𝑆ᄯᄰ𝑤ᆣᆣᆣ − 𝑆ᄯᄶ𝑣ᆣᆣᆣ − 𝑞ᅢ = 0, (18) 

 −𝑆ᄯᄾ 𝑢ᆣᆣ − 𝑆ᄱᄴ𝜑ᆣᆣ + 𝑆ᄰᄾ𝑤ᆣᆣᆣ − 𝑆ᄶᄾ 𝑣ᆣᆣᆣ − 𝑞ᆕ = 0, (19) 

 −𝑆ᄯᄰ𝑢ᆣᆣᆣ − 𝑆ᄰᄾ𝜑ᆣᆣᆣ + 𝑆ᄯᄳᅣ
 𝑤(ᄳᅀ) − 𝑆ᄰᄶ𝑣(ᄳᅀ) + 𝑘ᅠ𝑤 − 𝑘ᅗ𝑤ᆣᆣ − 𝑞ᅤ = 0, (20) 

 𝑆ᄯᄶ𝑢ᆣᆣᆣ + 𝑆ᄶᄾ𝜑ᆣᆣᆣ − 𝑆ᄰᄶ𝑤(ᄳᅀ) + 𝑆ᄯᄳᅤ
 𝑣(ᄳᅀ) − 𝑞ᅣ = 0, (21) 

  

with the boundary conditions 

 

 𝑢 = 0      or 𝑆ᄯᄫ 𝑢ᆣ + 𝑆ᄯᄾ  𝜑ᆣ − 𝑆ᄯᄰ  𝑤ᆣᆣ + 𝑆ᄯᄶ 𝑣ᆣᆣ = 𝑓ᅢ , (22) 

 𝜑 = 0     or 𝑆ᄯᄾ  𝑢ᆣ + 𝑆ᄱᄴ  𝜑ᆣ − 𝑆ᄰᄾ  𝑤ᆣᆣ + 𝑆ᄶᄾ  𝑣ᆣᆣ = 𝑚ᅢ , (23) 

 𝑤′ = 0    or −𝑆ᄯᄰ  𝑢ᆣ − 𝑆ᄰᄾ  𝜑ᆣ + 𝑆ᄯᄳᅣ
 𝑤ᆣᆣ − 𝑆ᄰᄶ 𝑣ᆣᆣ = −𝑚ᅣ (24) 

 𝑣′ = 0     or 𝑆ᄯᄶ 𝑢ᆣ + 𝑆ᄶᄾ  𝜑ᆣ − 𝑆ᄰᄶ 𝑤ᆣᆣ + 𝑆ᄯᄳᅤ
 𝑣ᆣᆣ = 𝑚ᅤ , (25) 

 w = 0     or 𝑆ᄯᄰ  𝑢′ᆣ + 𝑆ᄰᄾ  𝜑ᆣᆣ − 𝑆ᄯᄳᅣ
 𝑤ᆣᆣᆣ + 𝑆ᄰᄶ 𝑣ᆣᆣᆣ + 𝑘ᅗ𝑤ᆣ = 𝑓ᅤ , (26) 

 v = 0      or −𝑆ᄯᄶ 𝑢ᆣᆣ − 𝑆ᄶᄾ  𝜑ᆣᆣ + 𝑆ᄰᄶ 𝑤ᆣᆣᆣ − 𝑆ᄯᄳᅤ
  𝑣ᆣᆣᆣ = 𝑓ᅣ , (27) 

 

where 𝑓ᅢ, 𝑓ᅣ and 𝑓ᅤ are concentrated boundary loads in the 𝑥, 𝑦 and 𝑧 directions, respectively. Also, 𝑚ᅢ is the torque 

and 𝑚ᅣ and 𝑚ᅤ are the boundary moments about the 𝑦 and 𝑧 axes, respectively. An algebraic manipulation allows 

rewriting Eqs. (18)-(27) as 

 

 −𝑨𝑼ᆣᆣ + 𝑩𝑾 ᆣᆣᆣ = 𝑸𝒙, (28) 

 −𝑩ᄾ𝑼ᆣᆣᆣ + 𝑫𝑾 (ᄳᅀ) + 𝑲𝒘𝑾 − 𝑲𝒑𝑾 ᆣᆣ = 𝑸𝒛, (29) 

 𝑨𝑼ᆣ − 𝑩𝑾 ᆣᆣ = 𝑭𝒙, (30) 

 −𝑩ᄾ𝑼ᆣ + 𝑫𝑾 ᆣᆣ = 𝑴𝒚, (31) 

 𝑩ᄾ𝑼ᆣᆣ − 𝑫𝑾 ᆣᆣᆣ + 𝑲𝒑𝑾 ᆣ = 𝑭𝒛, (32) 

 

where 

 𝑼 = ԯ
𝑢

𝜑Ի, 𝑾 = Ԯ
𝑤

𝑣
Ժ, (33) 

 
𝑸𝒙 = 

𝑞ᅢ

𝑞ᆕ
Լ, 𝑸𝒛 = 

𝑞ᅤ

𝑞ᅣ
Լ, 𝑭𝒙 = 

𝑓ᅢ

𝑚ᅢ
Լ, 𝑭𝒛 = Ա

𝑓ᅤ

𝑓ᅣ
Խ , 𝑴𝒚 = ԯ

−𝑚ᅣ

𝑚ᅤ
Ի, 

(34) 

 
𝑨 = 

𝐸𝐴 𝑆ᄯᄾ

𝑆ᄯᄾ 𝑆ᄱᄴ
Լ, 𝑩 = 

𝑆ᄯᄰ −𝑆ᄯᄶ

𝑆ᄰᄾ −𝑆ᄶᄾ
Լ, 𝑫 = Բ

𝑆ᄯᄳቜ
−𝑆ᄰᄶ

−𝑆ᄰᄶ 𝑆ᄯᄳቝ

Ծ, 
(35) 

 𝑲𝒘 = ԯ
𝑘ᅠ 0

0 0
Ի, 𝑲𝒑 = 

𝑘ᅗ 0

0 0
Լ. (36) 

 

3 Solution procedure 
 

From the methodology proposed by Doeva, Masjedi and Weaver [2], it is possible to derive Eq. (28) to obtain 𝑼ᆣᆣᆣ 

and substitute it into Eq. (29). With this, it is obtained that 

 

 𝑾 (ᄳᅀ) = 𝑩𝟏𝑾 ᆣᆣ − 𝑩𝟐𝑾 + 𝑩𝟑, (37) 

 

where 

 

 𝑩𝟏 = (𝑫 − 𝑩ᄾ 𝑨ႼႲ𝑩)
ႼႲ

𝑲𝒑, (38) 

 𝑩𝟐 = (𝑫 − 𝑩ᄾ𝑨ႼႲ𝑩)
ႼႲ

𝑲𝒘, (39) 

 𝑩𝟑 = (𝑫 − 𝑩ᄾ𝑨ႼႲ𝑩)
ႼႲ

𝑸𝒛−(𝑫 − 𝑩ᄾ𝑨ႼႲ𝑩)
ႼႲ

𝑩ᄾ𝑨ႼႲ𝑸𝒙
ᆣ . (40) 

 

A change of variable can be performed as 

 

 𝒙𝟏 = 𝑾, 𝒙𝟐 = 𝑾 ᆣ, 𝒙𝟑 = 𝑾 ᆣᆣ, 𝒙𝟒 = 𝑾 ᆣᆣᆣ, (41) 

 

so that it can be stated that 

 

 𝒙𝟏
ᆣ = 𝑾 ᆣ = 𝒙𝟐, 𝒙𝟐

ᆣ = 𝑾 ᆣᆣ = 𝒙𝟑, 𝒙𝟑
ᆣ = 𝑾 ᆣᆣᆣ = 𝒙𝟒, 𝒙𝟒

ᆣ = 𝑾 Ⴞ𝑰𝑽Ⴟ = 𝑩𝟏𝒙𝟑 − 𝑩𝟐𝒙𝟏 + 𝑩𝟑. (42) 
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Therefore, the system of linear differential equations defined by Eq. (37) is rewritten as [8]: 

 

 𝑿 ᆣ = 𝑴𝑿 + 𝒇, (43) 

 

where 

 

 

𝑿 = Ը

𝒙𝟏

𝒙𝟐

𝒙𝟑

𝒙𝟒

Մ , 𝑴 =

⎣
⎢
⎢
⎢
⎡

𝟎𝟐𝒙𝟐  𝑰    𝟎𝟐𝒙𝟐 𝟎𝟐𝒙𝟐

𝟎𝟐𝒙𝟐  𝟎𝟐𝒙𝟐  𝑰  𝟎𝟐𝒙𝟐

𝟎𝟐𝒙𝟐 𝟎𝟐𝒙𝟐 𝟎𝟐𝒙𝟐   𝑰

−𝑩𝟐 𝟎𝟐𝒙𝟐 𝑩𝟏 𝟎𝟐𝒙𝟐 ⎦
⎥
⎥
⎥
⎤

, 𝒇 =

⎣
⎢
⎢
⎡

𝟎𝟐𝒙𝟏

𝟎𝟐𝒙𝟏

𝟎𝟐𝒙𝟏

𝑩𝟑 ⎦
⎥
⎥
⎤

, (44) 

 

where 𝑰 is the 2x2 identity matrix and 𝑴 is called a complementary matrix. 

 

3.1 Parameter variation method 
 

According to Zill and Cullen [9], the solution of the non-homogeneous first-order linear system in Eq. (43) is  

 

 
𝑿 = 𝝓(𝑥)𝑪 + 𝝓(𝑥) ڣ 𝝓ႼႲ(𝑥)𝒇𝑑𝑥, (45) 

 

where 𝝓(𝑥)  is the fundamental matrix constituted in its columns by the solution vectors of the equivalent 

homogeneous system [9], and 𝑪 is a vector formed by constants to be determined by the boundary conditions. 

 

3.2 Fundamental matrices and displacement fields 𝒘(𝒙) and 𝒗(𝒙) 
 

Three combinations of the foundation parameters are studied here, namely, 𝑘ᅠ = 0 and 𝑘ᅗ = 0 (no foundation), 

𝑘ᅠ = 0  and 𝑘ᅗ ≠ 0, and 𝑘ᅠ ≠ 0  and 𝑘ᅗ ≠ 0, which generate different fundamental matrices and, consequently, 

different solutions because the corresponding complementary matrix 𝑴 is different in each case. 

In the more general case ( 𝑘ᅠ ≠ 0  and 𝑘ᅗ ≠ 0 ) the complementary matrix 𝑴  has four different nonzero 

eigenvalues 𝜆ᅎ  ≠  0 , 𝑖 =  1,2,3,4 , and one null eigenvalue 𝜆 = 0  of multiplicity 4, so there are four linearly 

independent eigenvectors 𝑲𝒊, 𝑖 =  1, … ,4, complemented by the following basis vectors: 

 

 𝑲𝟓 = [0    1    0    0    0    0    0    0]
ᄾ , 

𝑲𝟔 = [0    0    0    1    0    0    0    0]
ᄾ , 

𝑲𝟕 = [0    0    0    0    0    1    0    0]
ᄾ , 

𝑲𝟖 = [0    0    0    0    0    0    0    1]
ᄾ . 

(46) 

 

Thus, the fundamental matrix 𝝓(𝑥) for this case is given by 

 

𝝓(𝑥) = Ԯ𝑲𝟏eᆊᆫᅢ 𝑲𝟐eᆊᆬᅢ 𝑲𝟑eᆊᆭᅢ 𝑲𝟒eᆊᆮᅢ 𝑲𝟓 (𝑲𝟓𝑥 + 𝑲𝟔) Ԗ
𝑲𝟓

Ⴓ
𝑥Ⴓ + 𝑲𝟔𝑥 + 𝑲𝟕Ԣ Ԗ

𝑲𝟓

Ⴗ
𝑥Ⴔ +

𝑲𝟔

Ⴓ
𝑥Ⴓ + 𝑲𝟕𝑥 + 𝑲𝟖ԢԺ. (47) 

 

Then, it is possible to obtain 𝒙𝟏  = 𝑾 = [𝑤(𝑥) 𝑣(𝑥)]
ᄾ  from Eq. (45), which provides 

 

 

𝑤(𝑥) =
𝑎ٺ4 − √𝑎Ⴓ − 4𝑏 eႼᆊᆫᅢ (𝐶Ⴓ − 𝐶ႲeႳᆊᆫᅢ )

2√2 𝑎 Ԗ𝑎 − √𝑎Ⴓ − 4𝑏Ԣ − 4√2𝑏
+

𝑎ٺ4 + √𝑎Ⴓ − 4𝑏 eႼᆊᆭᅢ (𝐶Ⴕ − 𝐶ႴeႳᆊᆭᅢ )

2√2𝑎 Ԗ𝑎 + √𝑎Ⴓ − 4𝑏Ԣ − 4√2𝑏
+

𝐹𝐹1(𝑥)

2√2
,

𝑣(𝑥) =
1

6
ԭ6 𝐶Ⴖ + 6 𝐶Ⴗ𝑥 + 3 𝐶Ⴘ𝑥Ⴓ + 𝐶Ⴙ𝑥Ⴔ + 𝐹𝐹2(𝑥)Թ ,

 (48) 

 

where  
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𝑎 =
𝑘ᅗ

𝑆ᄯᄳᅣ 
, 𝑏 =

𝑘ᅠ

𝑆ᄯᄳᅣ
, 𝑚(𝑥) =

𝑞ᅤ(𝑥)

𝑆ᄯᄳᅣ
, 𝑛(𝑥) =

𝑞ᅣ(𝑥)

𝑆ᄯᄳᅤ
, 𝜆Ⴒ =

𝑎ٺ − √𝑎Ⴓ − 4𝑏

−√2
, 𝜆Ⴔ =

𝑎ٺ + √𝑎Ⴓ − 4𝑏

−√2
,

𝐹𝐹1(𝑥) =
Ԗ𝑎 − √𝑎Ⴓ − 4𝑏Ԣ

Ⴔ
ႳԕeႼᅢᆊᆫ ∫ eᅢᆊᆫ𝑚(𝑥)𝑑𝑥 − eᅢᆊᆫ ∫ eႼᅢᆊᆫ𝑚(𝑥)𝑑𝑥ԡ

√𝑎Ⴓ − 4𝑏Ԗ−𝑎Ⴓ + 𝑎√𝑎Ⴓ − 4𝑏 + 2𝑏Ԣ

+
Ԗ𝑎 + √𝑎Ⴓ − 4𝑏Ԣ

Ⴔ
ႳԕeႼᅢᆊᆭ ∫ eᅢᆊᆭ𝑚(𝑥)𝑑𝑥  − eᅢᆊᆭ ∫ eႼᅢᆊᆭ 𝑚(𝑥)𝑑𝑥ԡ

√𝑎Ⴓ − 4𝑏Ԗ𝑎Ⴓ + 𝑎√𝑎Ⴓ − 4𝑏 − 2𝑏Ԣ

𝐹𝐹2(𝑥) = 𝑥Ⴔ ڣ 𝑛(𝑥)𝑑𝑥 − 3𝑥Ⴓ ڣ 𝑥𝑛(𝑥)𝑑𝑥 + 3𝑥 ڣ 𝑥Ⴓ𝑛(𝑥)𝑑𝑥 − ڣ 𝑥Ⴔ𝑛(𝑥)𝑑𝑥

. (49) 

 

3.3 Displacement 𝒖(𝒙) and rotation 𝝋(𝒙) fields 
 

Vector 𝑼 = [𝑢(𝑥) 𝜑(𝑥)]
ᄾ

 is obtained by integrating twice Eq. (28) as 

 

 
𝑼 = 𝑨ႼႲ𝑩𝑾 ᆣ − ڣ ԙڣ 𝑨ႼႲ𝑸𝒙𝑑𝑥ԥ 𝑑𝑥 + 𝑪𝟗𝑥 + 𝑪𝟏𝟎, (50) 

 

where 𝒙𝟐 = 𝑾′ is obtained via Eq. (45) and vectors 𝑪𝟗 and 𝑪𝟏𝟎 are obtained from the boundary conditions. 

 

4 Numerical results 
 
4.1 Isotropic beam under uniformly distributed load 𝒒𝒛 
 

Consider a dimensionless form for transverse deflection 𝑤(𝑥) and foundation parameters 𝑘ᅠ and 𝑘ᅗ as 

  

�֑�(𝑥) =
𝑤(𝑥)𝑆ᄯᄳቜ

𝑞ᅤ𝑙Ⴕ
, 𝑘ᅠ֒ =

𝑘ᅠ𝑙Ⴕ

𝑆ᄯᄳᅣ

, 𝑘ᅗ֑ =
𝑘ᅗ𝑙Ⴓ

𝑆ᄯᄳᅣ

. 
(51) 

 

In this case, displacements 𝑣(𝑥), 𝑢(𝑥) and 𝜑(𝑥) are null. In turn, for nonzero 𝑘𝑤
തതത and 𝑘𝑝

തതത, deflections �֑�(𝑥) for the 

simply supported beam and the doubly clamped beam are given, respectively, by 

 

 

�֑�𝑆𝑆(𝑥) =
4

𝑝2𝑞2

⎣
⎢
⎢
⎢
⎡

1 +
e

𝑝 (𝑙−𝑥)

√2 𝑙 𝑞2 + e

𝑝 𝑥

√2 𝑙𝑞2 − e

𝑞 (𝑙−𝑥)

√2 𝑙 𝑝2 − e

𝑞 𝑥

√2 𝑙𝑝2

(𝑝2 − 𝑞2) ԙ1 + e

𝑝

√2ԥ
⎦
⎥
⎥
⎥
⎤

, (52) 

 

and 
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�֑�ᄮᄭ(𝑥) = Ռ
ԕ𝑝Ⴓ − 𝑞Ⴓԡ𝑝𝑞

2
Ԝ1 − cosh

𝑞

√2
cosh

𝑝

√2
+ 2 cosh

𝑝

2√2
cosh

𝑝(𝑙 − 2𝑥)

2𝑙√2
sinh ԛ

𝑞

2√2
ԧ

Ⴓ

Ԩ

−
𝑝Ⴕ − 𝑞Ⴕ

4
cosh

𝑝(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

√2
sinh

𝑝

2√2
+

ԕ𝑝Ⴓ − 𝑞Ⴓԡ
Ⴓ

4
cosh

𝑝(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

√2
sinh

𝑝

√2

+ ԕ𝑝Ⴓ − 𝑞Ⴓԡ𝑝𝑞 cosh
𝑞

2√2
cosh

𝑞(𝑙 − 2𝑥)

2𝑙√2
sinh ԛ

𝑝

2√2
ԧ

Ⴓ

−
𝑝Ⴕ − 𝑞Ⴕ

4
cosh

𝑞(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

2√2
sinh

𝑝

√2
−

ԕ𝑝Ⴓ − 𝑞Ⴓԡ
Ⴓ

4
cosh

𝑞(𝑙 − 2𝑥)

2𝑙√2
sinh

𝑞

2√2
sinh

𝑝

√2

+
𝑝Ⴕ − 𝑞Ⴕ

4
sinh

𝑞

√2
sinh

𝑝

√2


∕ Ջ
ԕ𝑝Ⴓ − 𝑞Ⴓԡ𝑝Ⴗ𝑞Ⴗ

8
ԛ1 − cosh

𝑞

√2
cosh

𝑝

√2
ԧ +

ԕ𝑝Ⴕ − 𝑞Ⴕԡ𝑝Ⴓ𝑞Ⴓ

16
sinh

𝑞

√2
sinh

𝑝

√2
, 

(53) 

 

where 

  

𝑝 = 𝑘ᅗ֑ٻ + 𝑘ᅗ֑ٺ

Ⴓ
− 4𝑘ᅠ֒, 𝑞 = 𝑘ᅗ֑ٻ − 𝑘ᅗ֑ٺ

Ⴓ
− 4𝑘ᅠ֒. 

(54) 

 

Maximal deflections for different combinations of 𝑘ᅠ֒ and 𝑘ᅗ֑ are compared with those from [2] in Table 1 for the 

simply supported beam ԕ�֑�𝑆𝑆(𝑙 2⁄ )ԡ and the doubly clamped beam ԕ�֑�𝐷𝐶(𝑙 2⁄ )ԡ under uniform load. The number of 

decimal places adopted for the analysis is the same used by the authors from [2]. 

 

Table 1: Maximal deflections of the simply supported beam and the doubly clamped beam under uniform load. 

 

𝑘ᅠ֒ 𝑘𝑝
തതത 

Simply supported beam ൫𝑤ഥ𝑆𝑆(𝑙 2⁄ )൯ Doubly clamped beam ൫𝑤ഥ𝐷𝐶(𝑙 2⁄ )൯ 

Present work From [2] Present work From [2] 

0 

0 0.013021 0.013021 0.002604 0.002604 

10 0.006448 0.006448 0.002085 0.002085 

25 0.003661 0.003661 0.001607 0.001607 

10 

0 0.011804 0.011804 0.002553 0.002553 

10 0.006133 0.006133 0.002051 0.002051 

25 0.003556 0.003556 0.001587 0.001587 

100 

0 0.006400 0.006400 0.002165 0.002165 

10 0.004256 0.004256 0.001792 0.001792 

25 0.002828 0.002828 0.001426 0.001426 
 

In both cases, the three sets of results obtained for the different values of foundation parameters are in agreement 

with the results presented by Doeva, Masjedi and Weaver [2]. Therefore, the equations presented in Eqs. (52) and 

(53) are, in fact, the solutions. 

 

4.2 Cantilevered isotropic beam with a point load at the free end 
 

One of the numerical examples presented by Eisenberger [10] is the maximum deflection suffered by a cantilevered 

Euler-Bernoulli beam with a point load at the free edge and without an elastic foundation. In this example, units 

are all compatible and will be omitted. The beam material properties are 𝐸 = 2.9 ⋅ 10Ⴘ and 𝑣 = 0.3. The deflections 

were analyzed for a beam with unit dimension for thickness, height fixed at 12, with lengths of 12, 40, 80, and 160 

for a load of 𝑓ᅤ = 100. 

It is possible to find the maximum deflection results of this beam for each length 𝑙. The results obtained agree 

with those of Eisenberger [10], as shown in Table 2. The number of decimal places adopted for the analysis is the 

same used by the cited author. 
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Table 2: Maximal deflection for cantilever beam with a point load at free end. 

 

Length (𝑙) 
Maximal deflection (𝑤ᅔᅅᅢ) 

Present Work Eisenberger [10] 

12 0.013793 0.013793 

40 0.510856 0.510855 

80 4.086800 4.086800 

160 32.694800 32.694800 

 

In order to analyze the effect of an elastic foundation, Table 3 presents the maximal deflections of the beam with 

𝑙 = 160  and ℎ = 12 for different combinations of 𝑘𝑤
തതത  and 𝑘ᅗ֑ . To the best of our knowledge, there are no other 

published works on this case. It is observed that the Pasternak parameter 𝑘ᅗ֑ causes larger reductions in the maximal 

deflection than the Winkler parameter 𝑘ᅠ֒. 

 

Table 3: Maximal deflection for cantilever beam with elastic foundation with a point load at the free end. 

 

𝑘ᅠ֒ 𝑘ᅗ֑ Maximal deflection (𝑤𝑚𝑎𝑥) 

0 

0 32.694800 

10 6.717827 

25 3.138769 

10 

0 18.486274 

10 5.720577 

25 2.886946 

100 

0 4.309194 

10 2.642665 

25 1.748078 

 

5 Conclusions 

 

This work proposed to develop analytical solutions for the structure of isotropic beams, when supported or not on 

a Winkler-Pasternak elastic foundation. The equations describing the problem and the boundary conditions were 

derived from the principle of virtual work under the assumptions of Euler-Bernoulli beam theory. The solution of 

the system of equations was obtained using the method of variation of parameters. 

Analyzing numerically the results of the maximal deflections obtained, it was verified that with the increase of 

the foundation stiffness values, the flexural displacements decrease. Furthermore, it was found that the effect of the 

Pasternak stiffness parameter (𝑘ᅗ) on displacement is greater than the Winkler stiffness parameter (𝑘ᅠ). 

 

References 
 

[1] A. Selvadurai, Elastic analysis of soil-foundation interaction, 1st ed. New York, United States of America: Elsevier 

Scientific Publishing Company, 1979. 

 

[2] O. Doeva, P. Masjedi, e P. Weaver, “Closed form solutions for an anisotropic composite beam on a two-

parameter elastic foundation,” European Journal of Mechanics – A/Solids, vol. 88, paper no. 104245, 2021. 

Available at: https://doi.org/10.1016/j.euromechsol.2021.104245  

 

[3] M. Santos, “Estimates of statistical moments to the stochastic problem of bending beam on a Pasternak 

foundation,” Master's dissertation, Graduate Program in Mechanical and Materials Engineering, Federal 

Technological University of Paraná, Curitiba, Brazil, 2015. Available at: 

http://repositorio.utfpr.edu.br/jspui/handle/1/1301  

 

[4] S. Silva and W. Silva, “Estudo de pórticos planos utilizando um elemento finito de viga unificado em um 

programa de análise linear”, Mecánica Computacional, vol. XXIX, no. 17, pp. 1803-1815, 2010, in Portuguese. 

Available at: https://cimec.org.ar/ojs/index.php/mc/article/view/3116  



Static Analysis of Isotropic Beams on Winkler-Pasternak Foundations Santos et al. 

 

 Vetor, Rio Grande, vol. 33, no. 1, pp. 114–123, 2023  123

 

[5] Y. Luo, “An efficient 3D Timoshenko beam element with consistent shape functions,” Advanced Theoretical 

Applied Mechanics, vol. 1, no. 3, pp. 95-106, 2008. Available at: http://www.m-

hikari.com/atam/atam2008/atam1-4-2008/luoATAM1-4-2008-1.pdf  

 

[6] M. Robinson, S. Adali, “Buckling of elastically restrained nonlocal carbon nanotubes under concentrated and 

uniformly distributed axial loads,” Mechanical Sciences, vol. 10, pp. 145–152, 2019. Available at: 

https://doi.org/10.5194/ms-10-145-2019  

 

[7] J. Reddy, Energy principles and variational methods in applied mechanics, 2nd ed. Hoboken, United States of 

America: Wiley, 2002. 

 

[8] L. Pontriaguin, Ecuaciones diferenciales ordinarias, 1st ed. Madrid, Spain: Aguilar, 1973. 

 

[9] D. Zill, M. Cullen, Differential Equations with Boundary-Value Problems, 7th ed. Belmont, United States of 

America: Brooks/Cole Cengage Learning, 2008. 

 

[10] M. Eisenberger, “An exact high order beam element,” Computers & Structures, vol. 81, no. 3, pp. 147-152, 2003. 

Available at: https://doi.org/10.1016/S0045-7949(02)00438-8 


