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Abstract

In this article, we study away to numerically solve di�erential equations using neural networks. Basically, we rewrite
the di�erential equation as an optimization problem, where the parameters related to the neural network are opti-
mized. The proposal of this work constitutes a variation of the formulation introduced by Lagaris et al. [1], di�ering
mainly in the form of the construction of the approximate solution. Although we only deal with �rst and second
order ordinary di�erential equations, the numerical results show the e�ciency of the proposed method. Further-
more, this method has a great potential, due to the amount of di�erential operators and applications in which it can
be used.
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Resumo

Neste artigo, vamos estudar uma forma de resolver numericamente equações diferenciais utilizando redes neurais.
Basicamente, reescrevemos a equação diferencial como um problema de otimização, onde os parâmetros associados
à rede neural são otimizados. A proposta deste trabalho apresentada aqui constitui uma variação da formulação
introduzida por Lagaris et al. [1], diferenciando-se principalmente na forma de construção da solução aproximada.
Apesar de lidarmos apenas comequações diferenciais ordinárias de primeira e segunda ordens, os resultados numéri-
cos mostram a e�ciência do método proposto. Além disso, ele possui bastante potencial, devido a quantidade de
equações diferenciais e aplicações nas quais ele pode ser utilizado.

Palavras-chave
Redes neurais ∙ Equações diferenciais ∙ Otimização

1 Introduction
Neural networks represent an important branch of machine learning. The main idea is that the neural network
must emulate human brains. To achieve this, a set of input and output data is used to train the network, which
is called dataset. Once trained, the network must be able to recognize patterns, make predictions and/or make
classi�cations of new data. The theoretical foundations of neural networks mainly involve concepts of Optimization
and Computational Linear Algebra [2, 3]. Regarding applications, there is a large list of works in various �elds

⭐This article is an extended version of the work presented at the Joint XXIV ENMC National Meeting on Computational Modelling and XII
ECTMMeeting on Science and Technology of Materials, held in webinar mode, from October 13th to 15th, 2021.
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of knowledge, among which we list the following: inverse problems, optimal control problems, pricing models,
petroleum engineering, topological optimization, chemical reactions, electromagnetism and text processing. For an
overview of applications involving neural networks and existing work in the literature, the reader can consult [4].

As shown in Cybenko [5] and Hornik et al. [6], continuous functions on compact subsets ofℝn can be uniformly
approximated by linear combinations of sigmoidal functions. Therefore, it is possible to de�ne and train neural net-
works to approximate continuous functions and, consequently, we can use the derivatives of these neural networks
to obtain approximate solutions of di�erential equations, as long as the highest order derivative of the solution is
continuous. For boundary value problems, there is a possibility that the solution is not continuous. However, even
for this type of problem it is possible to approximate the solution by neural networks, as can be seen in Lagaris et al.
[1], Khemchandani et al. [7] and Avrutskiy [8].

In the original methodology introduced in Lagaris et al. [1], when solving a di�erential equation with boundary
conditions, the approximation of the exact solution, which is called test function, is con�gured in order to satisfy the
conditions imposed on the boundary, so that the neural network contained in it must be trained to �t only to the
di�erential equation. The proposal of this work consists of an adaptation of this methodology, where two alternative
formulations are presented. In the �rst one, just one neural network is taken that must simultaneously satisfy the
boundary conditions and �t the di�erential equation. In the second one, a test function formed by two independent
neural networks is used, where one of themmust be trained to satisfy the boundary conditions, while the other must
�t the di�erential equation.

In the next section, we present a general formulation of di�erential equations, with multi-index notation and
di�erential operators. This general formulation allows to justify and extend both the method presented in La-
garis et al. [1] and the formulations proposed in this work. In other words, in order to facilitate the explanation
of the methods covered in this work, di�erential equations, boundary conditions and optimization problems are
rewritten in terms of the di�erential operators.

The paper is organized as follows. In section 2, the general problem of di�erential equations is formulated and
the test functions with neural networks that will approach the exact solution to the di�erential equations are es-
tablished. In order to �t neural networks to the relations imposed by the di�erential equations, general problems
of optimization are de�ned. In Section 3, the optimization problems are de�ned for the speci�c cases of �rst and
second order Ordinary Di�erential Equations (ODEs). Then, in Section 4, details of how to compute ODE solutions
are de�ned from numerical optimization solutions. As expected, it turns out that the de�ned solution by the test
functions correspond to good approximations for solving �rst and second order ODEs. In the latter case, di�erent
types of boundary conditions are considered. Finally, in Section 5 we present the conclusions of the work.

2 General method to solve di�erential equations with neural networks
Let Ω ⊂ ℝn be an open and bounded set, with boundary denoted by Γ = )Ω, and Ψ ∶ Ω → ℝ a function having k
continuous derivatives. According to Evans [9], a quasilinear partial di�erential equation of order k can be written
as follows: ∑

|�|=k
D�Ψ ⋅ '1(Dk−1Ψ,… , DΨ,Ψ, x) = '2(Dk−1Ψ,… , DΨ,Ψ, x), x ∈ Ω. (1)

In (1), we are using the multi-index notation. So we have that � = (�1,… , �n), with each entry being a non-negative
integer and |�| = �1 + �2 + … + �n. Also, for every j ∈ {1,… , k}, the j-order derivative of Ψ is de�ned as:

DjΨ = ( )�1

)x�11

)�2

)x�22
⋯ )�n

)x�nn
)Ψ, with |�| = j. (2)

From (1), we de�ne the di�erential operators G[Ψ(x)] andℋ[Ψ(x)], where G[Ψ(x)] andℋ[Ψ(x)] de�ne the left
and right hand side of (1), respectively. Let ℬ[Ψ(x)] be a trace operator of order equal to or less than k − 1 and ℎ a
continuous function de�ned over Γ. With those elements, consider the following boundary value problem:

{ G[Ψ(x)] = ℋ[Ψ(x)] in Ω,
ℬ[Ψ(x)] = ℎ(x) on Γ. (3)

Here we will not deal with issues related to regularity of the domain or its boundary. Let’s just assume that the
problem (3) has a unique solution.

The approach to obtain a function that approximates the exact solution of (3), proposed in Lagaris et al. [1], is
presented below. From this point on, it is assumed in (1) that the function '1 is constant and that '2 is linear. In this
approach the test function Ψt is given by:

Ψt(x, p) = A(x) + F(x,N(x, p)), (4)
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where the function A ∶ Ω → ℝ is de�ned to ensure that Ψt satis�es the boundary condition in (3). However, this
term does not should interfere with the di�erential equation, which makes A a solution to the following problem:

{ G[A(x)] = ℋ[A(x)] in Ω,
ℬ[A(x)] = ℎ(x) on Γ. (5)

As a consequence of the boundary condition in (5), the function F ∶ Ω → ℝ must be taken in such a way that
ℬ[F(x,N(x, p))] = 0 on Γ. We also have that the function N ∶ Ω ×ℝH(n+2) → ℝ is a neural network with n inputs,
containing a layer composed ofH sigmoids and a linear output, that is,

N(x, p) =
H∑

i=1
vi �

⎛
⎜
⎝

n∑

j=1
!ijxj + ui

⎞
⎟
⎠
. (6)

In this case, we have that the parameter p is an array in ℝH(n+2) with weights vi , !ij and bias ui of the neural
architecture, with i ∈ {1,… , H} and j ∈ {1,… , n}. We also have the sigmoid function � ∶ ℝ→ ℝwhich is de�ned as
follows:

�(t) = 1
1 + e−t

. (7)

Finally, the strategy adopted in [1] consists in solving the following optimization problem:

min
p
E(p) ∶=

∑

yi∈Ω̂

(G[Ψt](yi , p) −ℋ[Ψt](yi , p))2, (8)

where Ω̂ is a discrete subset of Ω. In other words, the want the optimal adjustment of the parameters of the neural
network contained inΨt, in order tominimize the distance betweenG[Ψt] andℋ[Ψt]. It is noteworthy that, although
the optimization is done only with respect to the parameter p, the amount of points in Ω̂ also exerts a lot of in�uence
in the numeric results.

Based on the method introduced by Lagaris et al. [1], we propose two alternative formulations, considering
di�erent test functions. Let’s denote by Ψ1 and Ψ2 the respective test functions of each formulation. In both cases,
the functions A = A(x) and F = F(x,N), that appear in (4), are not used. We only consider one or a combinations
of two neural networks to de�ne the test function.

In the �rst proposed formulation, we assume that Ψ1 ∶ Ω × P → ℝ is given by

Ψ1(x, p) = N(x, p), (9)

where N is de�ned by (6). In this case, we can de�ne the optimization problem as follows:

⎧

⎨
⎩

min
p∈P

E(p) ∶=
∑

yi∈Ω̂

(G[Ψ1](yi , p) −ℋ[Ψ1](yi , p))2

subject to ℬ[Ψ1](yi , p) = ℎ(yi) on Γ̂,
(10)

where Γ̂ is a discretization of boundary Γ.
Regarding the second proposed formulation, let’s consider the test function Ψ2 ∶ Ω × P1 × P2 → ℝ de�ned by:

Ψ2(x, p1, p2) = N1(x, p1) +N2(x, p2), (11)

whereN1 ∶ Ω×P1 → ℝ andN2 ∶ Ω×P2 → ℝ are neural networks with n inputs and linear outputs, each consisting
of a combination of sigmoids, that is,

N1(x, p1) =
H1∑

i=1
�i �

⎛
⎜
⎝

n∑

j=1
�ijxj + i

⎞
⎟
⎠

e N2(x, p2) =
H2∑

i=1
ai �

⎛
⎜
⎝

n∑

j=1
bijxj + ci

⎞
⎟
⎠
. (12)

In this case, we have that networkN1 must minimize the distance between the operators G andℋ inside the domain
Ω and the network N2 serves to approximate boundary conditions on Γ. Then, taking Ω̂ ⊂ Ω and Γ̂ ⊂ Γ as the
respective domain and its boundary discretizations, the optimization problem with constraint is de�ned as follows:

⎧

⎨
⎩

min
(p1,p2)∈P1×P2

E(p1, p2) ∶=
∑

yi∈Ω̂

(G[Ψ2](yi , p1) −ℋ[Ψ2](yi , p1))2

subject to ℬ[N1](yi , p1) = 0 and ℬ[N2](yi , p2) = ℎ(yi) on Γ̂
(13)

In order to explain the proposed methods, in the next section will be presented some applications in ordinary
di�erential equations of �rst and second orders.
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3 Applications of the method in Ordinary Di�erential Equations
In this section, we will apply the formulations presented in the previous section to �rst and second order ODEs.
Since we are dealing with only one-dimensional problems, the neural networks introduced above are adapted to this
scenario. In other words, the networks N = N(x, p), N1 = N1(x, p1) and N2 = N2(x, p2), de�ned in (6) and (12)
assume, respectively, the following de�nitions:

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

N(x, p) =
H∑

i=1
vi�(!ix + ui)

N1(x, p1) =
H1∑

i=1
�i � (�ix + i)

N2(x, p2) =
H2∑

i=1
ai � (bix + ci)

(14)

3.1 First Order Ordinary Di�erential Equations
Let’s consider the following initial value problem:

⎧

⎨
⎩

dΨ
dx

(x) = f(x,Ψ(x)); x ∈ (x0, x1),

Ψ(x0) = A0,
(15)

where A0 ∈ ℝ and f are taken so that the problem (15) has a unique solution and that this solution has continuous
derivative.

From the formulation introduced in [1], it follows that the test function has the following form:

Ψ0(x, p) = A0 + (x − x0)N(x, p), (16)

where N is the neural network given by (14). Then, adapting the formulation of the optimization problem (8) to
solve (15), we obtain:

min
p∈P

∑

yi∈Ω̂

(
)Ψ0
)x

(yi , p) − f(yi ,Ψ0(yi , p)))
2

(17)

Now we introduce the �rst proposed formulation to solve the problem (15). In this case, the test function is
de�ned as

Ψ1(x, p) = N(x, p), (18)

where the neural networkN is given by (14). The adaptation of the constrained optimization problem (10) takes the
form below:

⎧

⎨
⎩

min
p∈P

∑

yi∈Ω̂

(
)Ψ1
)x

(yi , p) − f(yi , Ψ1(yi , p)))
2

subject to Ψ1(x0, p) = A0

(19)

Finally, by applying the second proposed formulation to solve the problem (15), we have that the test function is
given by

Ψ2(x, p1, p2) = N1(x, p1) +N2(x, p2), (20)

where the neural networks N1 and N2 are de�ned in (14). For this case, the optimization problem (13) becomes:

⎧
⎪

⎨
⎪
⎩

min
(p1,p2)∈P1×P2

∑

yi∈Ω̂

(
)Ψ2
)x

(yi , p1) − f(yi ,Ψ2(yi , p1)))
2

subject to { N1(x0, p1) = 0
N2(x0, p2) = A0

(21)

3.2 Second order ordinary di�erential equations
Here we are going to deal with two problems involving second-order equations: one with both prescribed boundary
conditions and the other with mixed boundary conditions.
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3.2.1 Problem with Dirichlet Boundary Conditions

Consider the following second order boundary value problem containing only Dirichlet boundary conditions:

⎧

⎨
⎩

d2Ψ
dx2

(x) = f (x,Ψ(x), dΨ
dx

(x)) ; x ∈ (x0, x1),

Ψ(x0) = A0, Ψ(x1) = A1.
(22)

It is assumed that A0 and A1 are real numbers and the function f is de�ned in such a way that the problem (22) has
a unique solution and that this solution has two continuous derivatives.

From the formulation proposed by Lagaris et al. [1], it follows that the test function for the problem (22) is given
by:

Ψ0(x, p) = (A1 − A0)
x − x0
x1 − x0

+ A0 + (x − x0)(x1 − x)N(x, p), (23)

where the neural network N is given by (14). In this case, the problem (8) takes the following form:

min
p∈P

∑

yi∈Ω̂

[
)2Ψ0
)x2

(yi , p) − f (yi ,Ψ0(yi , p),
)Ψ0
)x

(yi , p))]
2

(24)

By applying the formulations proposed in this work to solve the problem (22), we take the test functions Ψ1 and
Ψ2, respectively, by (18) and (20). The optimization problems (10) and (13) are now given, respectively, by:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

min
p∈P

∑

yi∈Ω̂

(
)2Ψ1
)x2

(yi , p) − f (yi , Ψ1(yi , p),
)Ψ1
)x

(yi , p)))
2

subject to { Ψ1(x0, p) = A0
Ψ1(x1, p) = A1

(25)

and
⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

min
(p1,p2)∈P1×P2

∑

yi∈Ω̂

(
)2Ψ2
)x

(yi , p1, p2) − f (yi ,Ψ2(yi , p1, p2),
)Ψ2
)x

(yi , p1, p2)))
2

subject to

⎧
⎪

⎨
⎪
⎩

N1(x0, p1) = 0
N1(x1, p1) = 0
N2(x0, p2) = A0
N2(x1, p2) = A1

(26)

3.2.2 Problem with mixed boundary conditions

Next, wewill consider the following boundary value problemof second order containingmixed boundary conditions:

⎧
⎪

⎨
⎪
⎩

d2Ψ
dx2

(x) = f (x,Ψ(x), dΨ
dx

(x)) ; x ∈ (x0, x1),

Ψ(x0) = A0,
dΨ
dx

(x0) = A1.
(27)

According to the formulation proposed by Lagaris et al. [1], the test function related to the problem (27) is de�ned
as:

Ψ0(x, p) = A0 + A1(x − x0) + (x − x(0))2N(x, p), (28)
where the neural network N is given by (14). In this case, the problem (8) has its formulation given by (24).

Following the same structure as the previous subsection, nowwe adapt the formulations proposed in this work to
the problem (27). Again, we have that the test functions Ψ1 and Ψ2 are given, respectively, by (18) and (20). Finally,
the optimization problems (10) and (13) are reduced, respectively, to:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

min
p∈P

∑

yi∈Ω̂

(
)2Ψ1
)x2

(yi , p) − f (yi , Ψ1(yi , p),
)Ψ1
)x

(yi , p)))
2

such that
⎧

⎨
⎩

Ψ1(x0, p) = A0
)Ψ1
)x

(x0, p) = A1

(29)
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and
⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

min
(p1,p2)∈P1×P2

∑

yi∈Ω̂

(
)2Ψ2
)x

(yi , p1, p2) − f (yi ,Ψ2(yi , p1, p2),
)Ψ2
)x

(yi , p1, p2)))
2

such that

⎧
⎪
⎪

⎨
⎪
⎪
⎩

N1(x0, p1) = 0
)N1
)x

(x0, p1) = 0
N2(x0, p2) = A0

)N2
)x

(x0, p2) = A1

(30)

4 Numerical results
This section compares analytical solutions of some ordinary di�erential equations with numerical solutions of opti-
mization problems de�ned in the previous section. The section is divided into three subsections. The �rst subsection
details general aspects for all numerical examples. The second subsection presents examples of �rst-order ODEs and
their solutions to the problems (17), (19) and (21). Finally, the third subsection includes second-orderODEs and their
solutions to the problems (24), (25), (26), (29) and (30).

4.1 General comments on the numerical results
In order to obtain numerical solutions to the optimization problems, we used the Matlab routine fmincon, which
is a general solver for nonlinear programming problems with equality and inequality constraints. Extensive user
documentation for this solver can be found with the “doc fmincon” command in Matlab.

The fmincon algorithm generates a sequence of parameters p(0), p(1),… , p(m),… convergent to a local minimum
p∗ of the optimization problem. The user can select the algorithm that fminconwill employ to generate this sequence
of points. In this work, the “interior-point” and “sqp” algorithms were used. A wide bibliography can be found for
these algorithms, for example in Byrd et al. [10] and Herskovits [11]. There was no signi�cant di�erence in using
one or the other algorithm to solve the optimization problems. The results obtained in this work employ the “sqp”
algorithm and we will consider the starting point as the null vector: p(0) = 0.

In practice the solver fmincon ends its execution by returning a point of the sequence p(m) that veri�es a stop
condition. When the stop condition happens, the solver terminates and returns a parameter called exitflag. We
remark the following conditions that stops the execution of fmincon:

• exitflag = 0: this condition indicates that fmincon terminates prematurely because the number of iterations
or the number of function evaluations exceeds a prede�ned maximum number. In this case the point p(m) is
generally not a good solution to the optimization problem.

• exitflag = 1: in this case the solver ends because p(m) is considered a local minimum.

• exitflag = 2 or 3: indicates that p(m) is a possible local minimum. In this case the solver ends because, in two
successive iterations, the value of the objective function value vary less than a tolerance or the optimization
variables vary less than a tolerance.

In all examples, their domains has the formΩ = [x0, x1] and their discretization Ω̂ are de�nedwithnx equidistant
points in Ω. It is denoted by Ψana the analytical solution, and by Ψnum the numerical solution of the problems (17),
(19), (21), (24), (25), (29) and (30), respectively. The numerical solution is de�ned as Ψnum(x) = Ψi(x, p(m)) with
i ∈ {0, 1, 2}. The functions N, N1 and N2 are one-input neural networks, as de�ned in (14). The network N is the
sum of H sigmoids, in this case it has 3H parameters gathered in the vector p ∈ ℝ3H . Likewise, the networks N1
and N2 are de�ned withH1 andH2 sigmoid, respectively. Thus, p1 ∈ ℝ3H1 and p2 ∈ ℝ3H2 .

The number of variables of the optimization problem (number of entries in the vector p) is denoted by np. For
problems with ones neural network (17), (19), (24) and (25) we have np = 3H. For problems with two neural
networks (21), (26) and (30), we have np = 3H1 + 3H2.

We say that a numerical solution Ψnum is acceptable for " > 0 if:
error = max

x∈Ω̂
|Ψana(x) − Ψnum(x)| ⩽ " (31)

The numerical experiments show that a local minimum of the optimization problems, detected by fmincon, do
not guarantee that the numerical solution Ψnum is acceptable for " ≈ 0. In all examples, it was observed that the
number of iterationsm is greater than np. This usually leads to premature termination of fminconwith exitflag = 0.
In this case the numerical solution obtained is such that |Ψana(x) − Ψnum(x)| is not close to zero for some points
x ∈ Ω̂. In some other cases the premature termination of fminconwith exitflag = 0 happens because themaximum
number of functions evaluations is exceeded.
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4.2 Examples with �rst-order ODEs

4.2.1 Example 1

Consider the following initial value problem given by:

⎧

⎨
⎩

dΨ
dx

(x) = �Ψ(x) − �e�xsin(�x); x ∈ (0, 1),

Ψ(0) = 1
(32)

where � = −2 and � = 10. The exact solution of (32) is

Ψana(x) = e�xcos(�x).

Fig. 1 shows the graph of the analytic solution Ψana and the numerical solutions of problems (17), (19) and
(21) . The solutions obtained with the problems (17) and (21) are acceptable, however the solution of (19) is not
satisfactory.

Figure 1: Numerical solutions for Example 1 with 20 points and 20 sigmoids.

Table 1 shows that fmincon terminates prematurely (exitflag = 0) by reaching themaximumnumber of function
evaluations (6000 evaluations). The number of iterations and errors obtained with the formulation (17) and (21) is
similar. It is also observed that fmincon cannot �nd an acceptable solution to the problem (19).

Table 1: Results for Example 1 with nx = 20 andH = 20.

Problem exitflag iterations error

(17) 0 95 4.4×10−3

(19) 0 72 4.3×10−1

(21) 0 93 8.6×10−3
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4.2.2 Example 2

In this example we want to solve the following ODE:

⎧

⎨
⎩

dΨ
dx

(x) = Ψ(x) [� cos(�x) − 1
x−

] + �
x−

esin(�x); x ∈ (0, 1),

Ψ(0) = 0
(33)

where � = − 1
3
, � = 4 and  = 3

2
. The exact solution of (33) is

Ψana(x) =
�x
x −  e

sin(�x).

Fig. 2 illustrates that the test functions of problems (19) and (21), obtained with fmincon, are close to the analytic
solution. Table 2 indicates that fmincon has reached a local minimum of the problem (17), however the obtained
solution is not acceptable for " = 0.1.

Figure 2: Numerical solutions for Example 2 with 20 points and 20 sigmoids.

Table 2: Results for Example 2 with nx = 20 andH = 20.

Problem exitflag Iterations error

(17) 1 30 1.9×10−1

(19) 0 671 5.9×10−5

(21) 0 768 1.3×10−4

Vetor, Rio Grande, vol. 31, no. 2, pp. 2–13, 2021 9
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4.3 Examples with second-order ODEs

4.3.1 Example 3

In this case we want to solve the following ODE:

⎧
⎪

⎨
⎪
⎩

d2Ψ
dx2

(x) = −� dΨ
dx
(x) − �; x ∈ (0, 1),

Ψ(0) = 0
Ψ(1) = 0

(34)

where � = 2 and � = 10. The analytical solution of (34) is

Ψana(x) = e−�x −
�
�x + �, where  =

�
�e−� − 1 and � = −.

The di�erential equation (34) corresponds to the equation of motion for a body thrown upwards near the earth’s
surface,Ψ(x) is the position of the body at the instant of time x. The left hand side of the di�erential equation in (34)
is the (unitary) mass times the acceleration. The right hand side of (34) is the sum of applied external forces to the
mass: a force opposite to the velocity −� dΨ

dx
(x) and the gravitational force −�. The mass is thrown from position 0,

at initial time x = 0, and returned to the same position at �nal time x = 1. The graph of the analytic solution shown
in Fig. 3 is not a parabola (the maximum height is before 0.5). The mass goes up with greater speed than when it
goes down. This behavior is due to the coe�cient of friction � > 0.

Fig. 3 reveals that the numerical solutions to the optimization problems at (24), (25) and (26) are close to the exact
solution. The number of iterations for each problem is shown in Table 3. In these example the solver converges
to local minimum of problems (24) and (26). For problem (25) the solver stopped with exitflag = 0 because it
exceeded the iteration limit. In this result we see that the error is acceptable but the optimality condition (�rst order
KKT conditions) was not accomplished yet.

Figure 3: Numerical solutions for Example 3 with 20 points and 20 sigmoids.
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Table 3: Results for Example 3 with nx = 20 andH = 20.

Problem exitflag Iterations error

(24) 1 246 2.4×10−7

(25) 0 600 1.2×10−6

(26) 1 259 6.2×10−7

4.3.2 Example 4

In this example, we want to solve:

⎧
⎪
⎪

⎨
⎪
⎪
⎩

d2Ψ
dx2

(x) = −� dΨ
dx
(x) − �Ψ(x); x ∈ (0, 1),

Ψ(0) = 1
2

dΨ
dx

(0) = 3

(35)

where � = 6 and � = 8. The analytical solution is

Ψana(x) = e−
1
2

(√
�+�

)
x + �e

1
2

(√
�−�

)
x, where  = −

� −
√
� + 8

4
√
�

, � =
� +

√
� + 8

4
√
�

and � = �2 − 4�.

The di�erential equation in (35) models the motion for a mass-spring-damper system, Ψ(x) is the position of the
mass at the instant of time x. In the left hand side of (35), d

2Ψ
dx2

(x) is the (unitary) mass times the acceleration and

the right hand side is the sum of the external forces: the friction, opposite the velocity−� dΨ
dx
(x), and the spring force

−�Ψ(x). At the initial instant x = 0, the mass starts from position 1
2
and has a velocity of 3. The initial velocity will

cause the mass to increase its position, but the spring force will cause the position to return asymptotically to the
equilibrium position 0. This is the behavior of the analytic solution shown in Fig. 4.

Fig. 4 graphs the test functions found for this example and shows that the solutions of (24) and (29) are good
approximations of the analytic solution. Table 4 reveals that the local minimum of their respective optimization
problems are found in a similar number of iterations.

Table 4: Results for Example 4 with nx = 14 andH = 14.

Problem exitflag Iterations error

(24) 1 380 9.0×10−6

(29) 1 383 2.0×10−5

(30) 0 420 2.6×10−1

5 Conclusions
In this work we introduce two alternative methodologies to solve initial and boundary value problems with neural
networks. Optimization problems with constraints are de�ned to �t the parameters of one or two single layer neural
networks. Numerical experiments were carried out with �rst and second order ODEs and the results show that they
are comparable to those obtained in Lagaris et al. [1]. The number of iterations performed by fmincon to solve (17),
(19) and (21) (as well as (24), (25) and (26)) are similar. Numerical results show that some local minimum of the
formulated optimization problems are also solution of the initial and boundary values problems. However, as the
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Figure 4: Numerical solutions for Example 4 with 14 points and 14 sigmoids.

numerical example 3 indicates, local minimum may not be a good solution for ODE. This leads to some questions.
How to de�ne optimization problems or techniques to avoid those local minima? Is it possible to formulate convex
optimization problems to solve ODEs? If there exists convexity, the problem of �nding local minimum is equivalent
to �nd satisfactory ODE solutions.

An interesting question that can be addressed in future works concerns the domain discretization. Both the
optimization problem associated with the methodology of Lagaris (Equation (8)) and the associated optimization
problems to the proposed methodology (Equations (19) and (21)) are de�ned using a previous discretization of the
domainΩ. How this discretization a�ects the numerical solutions? An alternative that can be implemented in future
work is the use of the L2 norm tomeasure the distance between the exact and the approximate solution. As this norm
is given by an integral, this eliminates the discretization of Ω and numerical errors could be avoided.

In Lagaris et al. [1], unconstrained optimization problemswere formulated to solve Partial Di�erential Equations
(PDEs). We believe it is also possible to de�ne equality constraints optimization problems and test functions to solve
PDEs.
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