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Abstract

In this work, the numerical code DualPhysics, based on the Lagrangian particle and mesh free method Smoothed
Particle Hydrodynamics, has been employed to solve the slightly compressible isothermal two-phase water-oil �ow.
The continuity andmomentum equations were solved, and we used the modi�ed Tait equation of state to determine
the pressure. To validate the numerical code, we solved the modi�ed Couette �ow of two �uids. As a practical case,
we solved the isothermal and two-dimensional two-phasewater-oil �ow. Themixing of the�uids occurs after passing
through a 45 degree Y junction placed at the entrance of the horizontal pipeline. Results showed the potential for
using the numerical code, although somemodi�cations and alterations are still necessary to solve practical problems.
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Resumo

O código numérico DualPhysics, baseado no método de partículas lagrangiano e livre de malha Smoothed Parti-
cle Hydrodynamics, foi empregado na resolução do escoamento bifásico óleo-água isotérmico e ligeiramente com-
pressível. São resolvidas as equações da continuidade, do momentum e a equação de estado de Tait modi�cada é
empregada na determinação da pressão. Na validação do código numérico, considerou-se o escoamento de Couette
de dois �uidos com massa especí�ca e viscosidade diferentes. Como exemplo de aplicação, resolveu-se numerica-
mente o escoamento bifásico água-óleo isotérmico e bidimensional, onde os �uidos são misturados através de uma
junção em Y de 45 graus colocada na entrada do duto horizontal. Os resultados mostraram o potencial de uso do
código numérico, embora ainda algumasmodi�cações e alterações sejam necessárias para que ele possa ser utilizado
na resolução de problemas práticos da engenharia de óleo e gás.

Palavras-chave
Fluidodinâmica Computacional ∙ Escoamentos Bifásicos ∙ Smoothed Particle Hydrodynamics

1 Introduction
Usually, the numerical solution of �uid �ow problems is complex and requires e�cient numerical methods, since
we must simultaneously consider the continuity and the Navier-Stokes equations and, for non-isothermal �ows,

⭐This article is an extended version of the work presented at the Joint XXIV ENMC National Meeting on Computational Modelling and XII
ECTMMeeting on Science and Technology of Materials, held in webinar mode, from October 13th to 15th, 2021.
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the energy equation. Among the possibilities, it is worth highlighting the Smoothed Particle Hydrodynamics (SPH)
method [1]. In such a method, we represent the domain using dynamic particles. Therefore, it does not require
computational meshes.

In the SPHmethod, we can simulate phenomena of di�erent scales, enabling the study of multiphase �ows, high
viscosity �uids, solid-�uid interfaces, and allowing several physical e�ects couplings. The literature provides a list of
cases [2, 3] that can be treated by thismethod, starting from its initial proposition to simulate astrophysical problems,
going through �ows with high deformation rates, and even semi-incompressible and incompressible problems [1].
In this method, we discretize the domain using a set of particles, and we can assign to each particle mass, position,
velocity, pressure, temperature, among others. These particles interact with others, obeying the governing equations,
and they move in space as time progresses.

We can �nd two-phase �ows in many �elds: in chemical processes, in thermal systems with evaporators, in
condensers and reactors, among others [4]. In the oil industry, they occur in production and transport along vertical
and horizontal pipelines. In this situation, the operation conditions and geometry can lead to di�erent shapes for
the �uid interface, and we classify the �ows according to the resulting patterns.

Knowing the �ow pattern allows us, for example, to predict the operational parameters. Thus, it is possible to
de�ne �ow characteristics that would minimize corrosion or erosion, allowing the optimization of the operating
conditions [5].

We can �nd few studies using the SPHmethod to identify �ow patterns in two-phase �ows in pipelines. Douillet-
Grellier et al. [6] identi�ed the patterns considering two immiscible �uids and two geometric setups (horizontal and
inclined pipes) for a set of velocity pro�les. However, this was only possible after the introduction of several changes
in the traditional SPH method formulation. For example, they modi�ed the way we determine the density and the
time step. Also, the authors introduced a repulsive force acting on the particles of the two phases, which are close to
the separation interface, and an interaction force in the momentum equation to model the surface tension e�ects.

Alternatively, Alvarado-Rodrígues et al. [7] studied the two-phase �ow with the SPH method and used an arti-
�cial viscosity and a particle shifting algorithm to maintain uniform particles distribution in the domain and thus
prevent the appearance of regions that do not contain particles. The results were validated considering the Poiseuille
and Couette two-phase �ows. Furthermore, the authors also sought to determine the �ow regimes observed in a hor-
izontal pipeline. To this end, they considered the insertion of two �owing phases with di�erent physical properties
and applied four velocity pro�les.

In this work, we obtain the results using the DualSPHysics software to simulate two-phase �ows in pipelines,
and we verify its feasibility for practical use.

2 Mathematical Model
Weknow thatwemust use a set of partial di�erential equations (PDEs) to describe an isothermal �owof compressible
Newtonian �uids. We present here the governing equations using the Lagrangian description.

2.1 Continuity Equation
The continuity equation is obtained from themass conservation and expresses the fact that in a given region of space
without sources or sinks, the mass �ow variation that enters and leaves such volume must be equal to the rate of
change in the �uid density in a given time interval [8],

D�
Dt + �∇ ⋅ v = 0 (1)

where D�∕Dt denotes the material derivative, � is the density, whereas t is the time and v is the velocity vector.

2.2 Momentum equation
We obtain this equation, which expresses the linear momentum conservation, considering the momentum balance.
We deduce it from Euler’s �rst law, which states that the variation rate of linear momentum must be equal to the
sum of the forces acting on the body [8]:

�DvDt = ∇ ⋅ T + fe (2)

where T is the stress tensor and fe represents the external forces acting on the �uid, usually due to the gravity.
The constitutive equation for the stress tensor, considering a compressible Newtonian �uid, is [8]

T = −PI + (�∇ ⋅ v)I + 2�D (3)
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where P is the dynamic pressure, � = −23� (assuming the Stokes hypothesis), � is the kinematic viscosity of the
�uid, and D is the symmetric part of the velocity gradient tensor.

Thus, the momentum equation can be rewritten as

�DvDt = −∇P + �∇2v − 2
3∇ (�∇ ⋅ v) + fe (4)

in which ∇P is the pressure force per unit volume, and �∇2v is the viscosity force per unit volume.

2.3 Equation of State for Pressure
In the SPH method, it is usual to consider incompressible �uids as quasi-compressible [9]. In this case, we adopt
an equation of state to calculate the pressure as a function of density. For two-phase �ows, the DualSPHysics code
provides the model proposed by Mokos [10], which is a modi�ed version of Tait’s equation of state

P(�) =
c2s�0
 [(

�
�0

)

− 1] + Pf − a�2 (5)

where  is the adiabatic expansion coe�cient (usually  = 7 [1]), �0 is the reference density, cs is the sound speed,
and Pf is the background pressure. The last term represents the e�ects of cohesive forces acting on the particles for a
given phase. The coe�cient a is de�ned based on the properties of the di�erent phases and the characteristic length
of the problem, L:

a = 1.5g (
�w
�a

)L (6)

where �w and �a are the reference density for each phase. The characteristic length is an empirical constant. It is
related to the domain dimensions and the initial distance between particles. Douillet-Grellier et al. [6] suggest taking
the pipe diameter as the characteristic length.

3 The Smoothed Particle Hydrodynamics method
During the code implementation and numerical solution using the SPH method, several steps and concepts are ap-
plied. A set of particles represent the domain at the beginning of the process. It is not required a connection between
them. This characteristic de�nes the mesh-free nature of the method, which consists of the following steps: [1]:

1. integral representation for �eld functions approximations (also known as kernel approximation);

2. particle approximation: replaces the integral representation of the �eld functions and their derivatives by a
sum over the values of the neighboring particles in the so-called support domain;

3. the particle approximations are performed to all terms related to �eld functions in the governing PDEs, pro-
ducing a set of ordinary di�erential equations (ODEs) where the independent variable is the time;

4. the resulting ODEs are solved using either an explicit or an implicit integration algorithm.

3.1 Integral representation of a function
The integral interpolation theory is the base of SPH method fundamentals. In this formulation, within a domain Ω
which contains a point x, we use convolution to obtain the integral representation of a function f(x), such as [1]:

⟨f (x)⟩ = ∫
Ω
f
(
x′

)
W

(
x − x′, ℎ

)
dx′ (7)

where f is a function of the position x, W(x − x′, ℎ) is the smoothing function with compact support (also called
kernel function or smoothing kernel function). Besides, ℎ is the smoothing length, which controls the in�uence area
ofW (it de�nes what are the neighboring particles of a given particle, as Fig. 1 depicts).

The kernel is fundamental for determining the approximation pattern, the size of the support domain, and the
consistency and accuracy of the approximations [1]. Consequently, it must satisfy some criteria. Aside from the com-
pact support condition, the normalization condition, smoothness, symmetry, and the Delta function property [1].

In the present work, the kernel used is the cubic spline proposed by Monaghan and Lattanzio [11],
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Figure 1: Domain Ω of a given particle a.

W(r, ℎ) = �d

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

1 − 3
2q

2 + 3
4q

3 if 0 ≤ q ≤ 1

1
4 (2 − q)3 if 1 ≤ q ≤ 2

0 if q ≥ 2

where �d=
10
7�ℎ2

for two-dimensional problems, and 1
�ℎ3

for three-dimensional problems.
The compact support allows us to replace the integral over the entire domainΩ by a summation over the in�uence

area of the chosen particle (in the so-called smoothing length). Consequently, in the SPHmethod, the properties of a
particle are evaluated by weighing the properties of neighboring particles. Thus, in the SPH formalism, the particle
approximation of a function [1] is:

⟨f (xi)⟩ =
N∑

j=1

mj

�j
f
(
xj

)
Wℎ

ij . (8)

In this equation, ⟨f(xi)⟩ is the approximation for function f at the position of �xed particle i; f(xj) is the approxima-
tion for function f at the neighboring particle j;mj is the mass of particle j; �j represents the density of neighboring
particle j;Wℎ

ij is the kernel evaluated at position xi − xj andN is the number of neighboring particles for particle i.
From Eq. (8), we can obtain the expressions for the gradient and divergent operators in the SPH formalism [1]:

⟨∇⊗ f (xi)⟩ =
N∑

j=1

mj

�j
∇iWℎ

ij ⊗ f
(
xj

)
(9)

and

⟨∇ ⋅ f (xi)⟩ =
N∑

j=1

mj

�j
∇iWℎ

ij ⋅ f
(
xj

)
. (10)

Here,Wℎ
ij =W(rij , ℎ), and considering particle i, we evaluate the gradient such that:

∇iWℎ
ij =

xij
rij

)Wℎ
ij

)rij
(11)

where xij and rij represent the distance separating particles i and j (xij = xi − xj , and rij = |xi − xj|) [12].
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3.2 Discretized balance equations
After introducing the basics of themethod and the particle approximation, we proceedwith the discretization stage of
the governing equations. Considering vij = vi−vj , we can express the discretized form of the continuity equation (1)
as [13]

D�i
Dt =

N∑

j=1
mjvij ⋅∇Wℎ

ij (12)

and, for the Navier-Stokes equation (4),

Dvi
Dt = −

N∑

j=1
mj (

Pi + Pj
�i�j

+ Λij)∇iWij − 2a�2a
N∑

j=1

mj

�j
∇iWij + Fs + g (13)

whereΛij is the term introducing the arti�cial viscosity [1] (the viscous dissipation termwas not directly discretized)
as follows:

Λij =

⎧
⎪

⎨
⎪
⎩

−�� c̄ij�ij
�̄ij

if vij ⋅ rij < 0

0 if vij ⋅ rij > 0

where c is the sound speed, and the average values for the sound speed and density are respectively c̄ij = 0, 5(ci + cj)
and �̄ij = 0, 5(�i+�j). Wemust choose the value of � such as the energy transfer rate, due to the viscous dissipation,
has its e�ects taking into account [1]. The introduction of an arti�cial viscosity aims to avoid the emergence of
numerical instabilities and the interpenetration between particles, even for inviscid �ows [9].

In addition, Fs represents the external force added to take into account the e�ects of surface tension [14]

Fs =
∑

j
mj

Π��
i + Π��

j

�i�j
)W
)rij

(14)

in which we evaluate the surface stress tensor using

���
i = ��� 1

|||||∇C
��
i

|||||
( 1
d

|||||∇C
��
i

|||||
2
I − ∇C��i ⊗∇C��i ) (15)

where we introduced the gradient for the color function C, for phase �, given by

C�i = {
1 if i ∈ �
0 if i ∉ �

(16)

which only exists in the presence of neighboring particles belonging to phase � (� ≠ �), such as [14]

∇C��i =
∑

j

mj

�j

(
C�j − C�i

) )W
)rij

. (17)

4 Aspects/Characteristics of the DualSPHysics software
Using C++ as the programming language, DualSPHysics is a numerical implementation of the SPH method devel-
oped to simulate realistic engineering problems using up to millions of particles and has a parallelized version based
onOpenMPandCUDAAPIs [15]. In the presentwork, weusedmultiphase version 4.0, available athttps://dual.sphysics.org.

4.1 Particle repositioning
When we use the SPH method, we can sometimes face an instability called anisotropic particle spacing. It occurs
due to the agglutination of particles [15]. DualSPHysics uses a modi�ed version of the algorithm proposed by Xu
et al. [16] to reposition particles (shifting algorithm). In this technique, particles are periodically moved to zones
with lower particle concentrations to allow the domain to maintain a uniform distribution of particles, eliminating
unwanted voids.
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4.2 Temporal evolution and time step
In solving the system of ordinary equations, the temporal evolution algorithm chosen was the Verlet numerical
integration scheme [17]. For an isothermal �ow, we consider the shortened version of the governing equations:

Dva
Dt = Fa , (18)

(19)
D�a
Dt = Ra , (20)

(21)
Dra
Dt = va , (22)

where the �rst equation stands for the momentum equation, the following for the continuity equation, and we use
the third equation to calculate the displacement of �uid particles.

For example, we usually employ the Verlet scheme in molecular dynamics due to its low computational cost.
It is an explicit second-order method that does not require multiple steps at each time iteration When we use the
Verlet method to the resolution of quasi-compressible �ow, as in the case of DualSPHysics, we calculate the variables
according to the following scheme:

vn+1a = vn−1a + 2∆tF n
a , (23)

(24)

rn+1a = rna + ∆tvna +
1
2∆t

2F n
a , (25)

(26)

�n+1a = �n−1a + 2∆tRna . (27)

Due to the nature of the method, the density and velocity values at time n + 1 are not coupled, given that they
do not use the values evaluated at n (using only those available at n − 1). This fact can lead to the divergence of the
method [13]. Therefore, an intermediate step is required:

vn+1a = vna + ∆tF n
a , (28)

(29)

rn+1a = r na + ∆tvna +
1
2∆t

2F n
a , (30)

(31)

�n+1a = �na + 2∆tRna , (32)

where the superscript n represents the current time and t = n∆t.
We must ful�ll a Courant-Friedrichs-Lewy (CFL) condition to ensure that the Verlet method is stable, given that

it is an explicit method [13]. So, we obtain the time step as follows

∆t = CCFL min
(
∆tf ,∆tcv

)
(33)

∆tf = mina
⎛
⎜
⎝

√
ℎ

|||fa|||

⎞
⎟
⎠
, (34)

∆tcv = mina

⎛
⎜
⎜
⎜
⎜
⎝

ℎ

cs +maxb (
ℎva ⋅ ra
r2ab + �2

)

⎞
⎟
⎟
⎟
⎟
⎠

, (35)

where CCFL is a multiplicative factor, ∆tf is obtained from the evaluated force fa per mass unit acting on particle a,
and ∆tcv is the estimate for the ratio between the particle displacement (ra) and its velocity (va), plus the speed of
sound (cs).
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4.3 Boundary conditions
We represent the domain boundaries by a set of particles treated separately from the �uid particles. In DualSPHysics
software, the standard boundary condition is called dynamic boundary condition. In this condition, we apply the
same governing equations to the particles placed on the boundaries. However, they do not move due to the forces
acting on them [15]. When a �uid particle approaches a boundary, and the distance between them becomes twice as
small as the smoothing length ℎ, the density of boundary particles has its value increased, causing a pressure incre-
ment. Consequently, a repulsive force is created and exerted on the approaching �uid particle due to the pressure
contribution in the momentum equation.

5 Results
We start by checking the accuracy of the numerical code results. With this purpose in mind, we solve the modi�ed
Couette �ow problem, which is a �ow of two �uids with di�erent viscosities and densities between two parallel
plates.

After that, we addressed the two-phase �ow in a horizontal pipe. We performed this using two reservoirs that
store the two di�erent �uids. Then, we inject the �uids into the pipeline through a Y-shaped connection.

5.1 Modi�ed Couette �ow
In the modi�ed Couette �ow, as described by Alvarado-Rodríguez et al. [7], the �ux occurs between two in�nite
parallel plates for two �uids with distinct densities (�1 and �2) and viscosities (�1 and �2).

In this problem, there is a laminar �ow between the plates. The upper plate is moving in the x-direction while
we keep the lower plate at rest. The initial velocity for the plate at the top is V = 1.0 × 10−3 m/s in the x-axis positive
direction, the distance separating each plate is y=0.001m, with each �uid phase �lling half of the total height (ℎ1=ℎ2
= 0.0005 m), as shown in Fig. 2.

Figure 2: Geometric con�guration for the modi�ed Couette �ow.

Now, we simulate the in�nite domain by introducing periodic boundary conditions, applied even for the particles
that represent the horizontal plates. Table 1 holds the other parameters used in this simulation, such as physical
properties for each �uid.

Table 1: Parameters used for the Couette �ow.

Parameter Symbol Value

Distance between particles dp 5.0 × 10−5 m

Density for Phase 1 �1 1,000 kg/m3

Density for Phase 2 �2 2,000 kg/m3

Viscosity for Phase 1 �1 0.5 × 10−6 m2/s

Viscosity for Phase 2 �2 1.0 × 10−6 m2/s

For this speci�c problem, we know that there is an analytical solution [13]. It provides the theoretical velocities,
for each phase (v�1 and v�2), in a steady-state regime as a function of the height y:
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v�1 = ( V
�2ℎ1 + �1ℎ2

) [�1 (y − ℎ1) + �2ℎ1] , (36)

v�2 = (
�2V

�2ℎ1 + �1ℎ2
) y. (37)

Figure 3 shows the comparison between the theoretical velocities and those obtained numerically, acquired in
21 equally spaced points along the y-axis, at the middle point of the total length in the x-axis.

Figure 3: Velocity pro�les for the Couette �ow problem.

As we can see in the �gure, the numerical values are very close to the theoretical. We found even that some
numerical values overlapping parts of the theoretical curve. Additionally, the velocity for particles in contact with
the lower plate is zero, as Eq. (36) predicts, and has its maximum value for particles near the plate upper plate, in
agreement with Eq. (37). We also observe the correct representation for the change in the pro�le around y=0.0005m,
which de�nes the position of the �uid separation interface.

From the values obtained through the analytical solution, we can estimate the accuracy of the numerical results
by evaluating the relative mean square error,

%RMSE = 100 ×
√

1
N

∑
(vSPH − vexact)

2 (38)

whereN is the number of data points, vSPH is the velocity obtained with the SPHmethod, and vexact is the analytical
velocity value. In the present case, we obtained a value of 1.94 × 10−5% for the relative error. Therefore, we can
conclude that the numerical results accurately reproduced the values predicted by the theory.

5.2 Two-phase �ow in a horizontal pipe
In this �ow, we seek to identify the �ow regimes reported by Alvarado-Rodríguez et al. [7]. We display in Fig. 4 the
geometry (not at scale) that represents the problem domain.

The main pipe section, where the two-phase �ow occurs, is 3.00 m long with a diameter of 20 mm. We use a
Y-shaped connection with � = 45◦ to inject the �uids and cause them to mix. Each injection section has the same
diameter d1=d2=10 mm, with the upper phase corresponding to oil and the lower representing the water. The two
input sections act as reservoirs, maintaining the �ow in the main section of the pipe, where it is analyzed.

In all simulations, we utilized 7.5×10−5 mas the initial distance between particles and 840 kg/m3 and 998 kg/m3

for the densities of Phases 1 and 2, respectively. We considered four sets of velocities, as presented in Table 2.
Figure 5 shows the �ow patterns obtained for each of the four sets of velocities from Table 2. We acquired the

results in the pipe section directly after the phases insertion zone. Then, we created the visualization patterns that
we observe in this �gure using the densities values of each phase.
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Figure 4: Geometric con�guration for the horizontal pipe problem.

Table 2: Initial velocities for each phase.

Test case Velocity of Phase 1 Velocity of Phase 2

1 0.085 m/s 0.16 m/s
2 0.250 m/s 0.20 m/s
3 0.085 m/s 1.00 m/s
4 0.650 m/s 0.16 m/s

(a) Smooth Strati�ed Flow

(b) Wavy Strati�ed Flow

(c) Bubbly �ow

(d) Dual Continuous Flow

Figure 5: Visualization of the �ow patterns for Cases 1, 2, 3 and 4. Color map depicts the density.

Case 1, Fig. 5a, represents the regime known as Smooth Strati�ed Flow, which occurs when the relative velocities
for the phases are low, and there is a complete gravitational separation. We can observe a clear separation between
the �uids with a smooth interface. We think that we correctly identi�ed this regime.

The second regime (Fig. 5b), Case 2, corresponds to theWavy Strati�ed Flow regime, on which, even though the
phases are separated, there is a higher undulation in the �uid separation interface. This �ow pattern appears when
the velocity of the �uid with lower density is increased compared to that used in the smooth strati�ed �ow.

For the following result, Case 3 and Fig. 5c, the identi�ed regime is classi�ed as Bubbly �ow, occurring when we
increase the velocity of the heavier phase. In this case, we maintain the velocity of the lighter phase equal to that
of the smoothed strati�ed �ow. For this �ow pattern, we note the dispersion of the phase oil in the phase water as
discrete bubbles. The continuity of the lighter phase is limited to the upper section of the pipe.
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Lastly, we highlight that Case 4 matches the Dual Continuous Flow regime. With the increase in velocity for the
lighter phase, the strati�ed regime transforms into this new pattern. Its characteristic is the maintenance of some
phase continuity in the upper and lower pipe areas. Nevertheless, there is now a dispersion of both �uids. As we can
verify, Fig. 5d corresponds to the related behavior, con�rming that we rightly captured the reference regime with the
simulation using DualSPHysics.

6 Conclusions
We studied the feasibility of using the DualSPHysics numerical code, based on the SPH method, to simulate two-
phase oil-water �ows in pipes.

For themodi�edCouette �owproblem, the obtained numerical solution showed good agreementwith the analyt-
ical solution. The analysis of the relative error indicated the accuracy of the results obtained with the DualSPHysics.

Finally, in the test cases for the two-phase oil-water �ow, both �uids are injected into themain horizontal pipe us-
ing a Y-shaped connection. It was possible to identify some of the typical �ow patterns in horizontal tubes, matching
those expected for the initial velocity ranges imposed to each phase. In this way, we understood that the appropriate
capture of the �ow regimes demonstrates the potential and feasibility of using DualSPHysics to simulate two-phase
�ows in horizontal pipes.
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