
VETOR

Parameter 𝑁 Influence on Fixed-Talbot Algorithm
for Laplace Transform Numerical Inversion⭐
Influência do Parâmetro 𝑁 no Algoritmo de Talbot-Fixo para a Inversão
Numérica da Transformada de Laplace

George Ricardo Libardi Calixto1†, Elisandra Konflanz Freitas1, Juciara Alves Ferreira1, Bárbara
Denicol do Amaral Rodriguez1, João Francisco Prolo Filho2

1Programa de Pós-Graduação emModelagem Computacional, PPGMC/FURG - Rio Grande, RS, Brasil
2Programa de Pós-Graduação em Engenharia Oceânica, PPGEO/FURG - Rio Grande, RS, Brasil
†Corresponding author: libardicalixto@hotmail.com

Abstract

In this paper, Fixed-Talbot method computational aspects are explored for Laplace Transform numerical inversion
and its efficiency in the treatment of a set of elementary functions of an exponential, oscillatory and logarithmic
nature, based on the influence investigation of free parameter 𝑁. The numerical results are compared to the ana-
lytical solution while calculating the absolute error. The best value for 𝑁 was determined in each studied function
class, where the method presents satisfactory results. It was observed that increasing the number of terms in the
summation for approximation (beyond the optimal value) doesn’t imply obtaining more refined results. In general,
based on the data obtained, it was concluded that Fixed-Talbot method is efficient for the inversion of all classes of
elementary functions evaluated in this article.
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Resumo

Neste artigo, são explorados os aspectos computacionais do método de Talbot-Fixo para a inversão numérica da
Transformada de Laplace e sua eficiência no tratamento de um conjunto de funções elementares de natureza expo-
nencial, oscilatória e logarítmica, a partir da investigação da influência do parâmetro livre𝑁. Os resultados numéri-
cos são comparados à solução analítica, calculando-se o erro absoluto. O melhor valor para 𝑁, em cada classe de
função estudada, nos quais o método apresenta resultados satisfatórios, foram determinados. Observou-se que au-
mentar o número de termos do somatório para a aproximação (além do valor ótimo) não implica em obter resultados
mais refinados. De um modo geral, fundamentado nos dados obtidos, conclui-se que o método de Talbot-Fixo é efi-
ciente para a inversão de todas as classes de funções elementares avaliadas neste trabalho.

Palavras-chave
Laplace Transform ∙ Inverse Transform ∙ Numerical Methods ∙ Fixed-Talbot

1 Introduction
Laplace Transform is a powerful tool, generally applied to initial value problems resolution, involving physical phe-
nomena such as electromagnetism [1], heat transfer [2]; as well as in areas such as hydrology [3], bio-medicine [4],

⭐This article is an extended version of the work presented at the Joint XXIV ENMC National Meeting on Computational Modelling and XII
ECTMMeeting on Science and Technology of Materials, held in webinar mode, from October 13th to 15th, 2021.
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among others.
However, depending on the solution format, in many applications it’s impossible to invert Laplace Transform

analytically, making the numerical approach the only viable one [5]. According to Abate and Valkó [6], it’s estimated
that there are more than 100methods available in the literature for Laplace Transform numerical inversion, which
can be classified into four categories known as (i) Fourier Series Expansion;(ii) Laguerre Function Expansion; (iii)
Combination of Gaver Functionals; (iv) Bromwich Contour Deformation.

The non-existence of a universal method for inverting this technique makes the vast research in this area justi-
fiable as it provides subsidies for a correct method to be used for each case, where the solution is known. Among
the specifications, the processing time, numerical precision, and implementation difficulty have been evaluated,
confirming that no method is superior to others in all aspects [7].

Within this context, in this study, we analyze the parameter 𝑁 influence on the Fixed-Talbot (FT) method by
performing tests on elementary transformed functions, whose analytical inverse is known.

The free parameter𝑁 indicates the number of terms used in the series that approximate the function to be trans-
formed by the FT method. This parameter can vary in order to provide results with the smallest possible error.

We also evaluate the method as to its performance for Laplace Transform inversion of different classes of func-
tions, as well as the implemented algorithm validation.

2 Fixed-Talbot Method
Abate and Valkó [6] denoted a variation, proposed by Talbot [8], which performs the inversion from the Bromwich
integral by using Fixed-Talbot method.

The Fixed-Talbot algorithm can be simply implemented and it will always find a solution if it exists [9]. This
technique has demonstrated stability in solving problems of electrochemical systems, in elementary functions tests
([6], [10], [11]), Müntz polynomials evaluation [1], viscoelastic waves [12] and heat conduction [13]. Thus, the
contour deformation of Bromwich used here is

𝑠(𝜃) = 𝑟𝜃(cot(𝜃) + 𝑖),−𝜋 < 𝜃 < 𝜋. (1)

After differentiating Eq. (1), we obtain

𝑠′(𝜃) = 𝑖𝑟(1 + 𝑖𝜎(𝜃)), (2)

where
𝜎(𝜃) = 𝜃 + (𝜃 cot(𝜃) − 1) cot(𝜃). (3)

After some simplifications, constants manipulation and integration limits adequacy, it comes to

𝑓𝐹𝑇(𝑡) =
𝑟
𝜋 ∫

𝜋

0
Re
[
𝑒𝑡𝑠(𝜃)𝐹(𝑠(𝜃))(1 + 𝑖𝜎(𝜃))

]
𝑑𝜃, (4)

where 𝑡 is a dimensionless variable, Re[ ] matches the real part of the argument and 𝑠 is the parameter in Laplace
transform given by Eq. (1).

Applying the Trapezoidal Rule, using 𝑁 points equally spaced, with step size 𝜋
𝑁 [14], 𝑁 ∈ ℕ, and 𝜃𝑘 = 𝑘𝜋

𝑁 ,
where 𝑘 = 1, 2, ..., 𝑁 − 1 [9], the Eq. (4) can be approximated by

𝑓𝐹𝑇(𝑡) ≈
𝑟
𝑁

⎧

⎨
⎩

1
2𝐹(𝑟)𝑒

𝑟𝑡 +
𝑁−1∑

𝑘=1
Re
[
𝑒𝑡𝑠(𝜃𝑘)𝐹(𝑠(𝜃𝑘))(1 + 𝑖𝜎(𝜃𝑘))

]⎫

⎬
⎭

. (5)

It is worth remembering that the Trapezoidal Rule is a numerical integration method where the integration
interval is divided into 𝑁 sub-intervals (partition) and, in each sub-interval, the integrand is approximated by a
linear function using Lagrange polynomials.

From the obtained results in numerical experiments [6], it is defined that

𝑟 = 2𝑁
5𝑡 . (6)

In this way, Fixed-Talbot approximation of 𝑓(𝑡) becomes dependent on only free parameter𝑁, which represents
the number of terms of the summation in Eq. (5).
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3 Results and Discussions
In this section, we discuss the numerical results obtained through Laplace Transform numerical inversion using
Fixed-Talbot (FT) technique. To carry out the tests and analysis of the inversion method, five elementary functions
were used (as can be seen in Table 1). The purpose of these tests is to explore and evaluate the performance of the
method for inverting these five classes of functions and analyze the parameter 𝑁 influence.

In particular, the influence on function 𝑓4(𝑡), where 𝛾 ≈ 0.5772156649 is the Euler-Mascheroni constant (also
called Euler’s constant) [15].

3.1 Testing functions
For the validation tests, Octave 5.2.0 free software was used on a computer with a Windows Home Single Language
operating system, Intel(R) Core(TM) i3-5005Uprocessor at 2.00GHz andmemory (RAM) at 4.00GB. Table 1 presents
the test functions and their respective Analytic Inverse Transforms.

Table 1: Laplace Transform and its respective inverse.

𝐹(𝑠) 𝑓(𝑡)

𝐹1(𝑠) =
1

𝑠2 + 1
𝑓1(𝑡) = sin(𝑡)

𝐹2(𝑠) =
1

(𝑠 + 1)(𝑠 + 2)
𝑓2(𝑡) = 𝑒−2𝑡(𝑒𝑡 − 1)

𝐹3(𝑠) =
1

𝑠2 + 𝑠 + 1
𝑓3(𝑡) =

2
√
3

3 𝑒−0.5𝑡 sin (
√
3
2 𝑡)

𝐹4(𝑠) = −ln 𝑠𝑠 𝑓4(𝑡) = ln 𝑡 + 𝛾

𝐹5(𝑠) =
1

(𝑠 + 1)2
𝑓5(𝑡) = 𝑡𝑒−𝑡

The Tables 2-6 present the absolute errors and the parameters values that were used here. Figures 1-5 show a
comparison between theAnalytical Inverse Transform and theNumerical Inverse Transform obtained by FTmethod
for each value of𝑁. The functions were examined for the values of𝑁 ∈ ℕ, where𝑁 = 1, 2, 3, ..., 70, indicated by the
literature ([6], [10], [12]), and it was established as satisfactory results, where the absolute error order is lower than
10−8. The best value of𝑁, which represents the number of terms in the summation for the approximation of 𝑓(𝑡) in
each case, was determined from the analysis of the mean absolute error (𝐸𝑎𝑏𝑠), defined as

𝐸𝑎𝑏𝑠 =
1
𝑁𝑡

𝑁𝑡∑

𝑖=1
𝐸𝑎𝑏𝑠(𝑓(𝑡𝑖)) (7)

where 𝑁𝑡 is the number of 𝑡 values used to generate each profile on Tables 2-6 and 𝐸𝑎𝑏𝑠(𝑓(𝑡𝑖)) is the absolute error
estimated between the numerical and analytical inversions for each functions 𝑓 at each point 𝑡𝑖 ([16]).

Due to the parameter 𝑟 definition in terms of the variable 𝑡 (Eq. (6)), it was agreed that all the tests started from
𝑡 = 10−4.

3.2 The inversion of 𝐹1(𝑠)
Figure 1 and Table 2 demonstrate the numerical inversion tests for Laplace Transform through the Fixed-Talbot
method for the function 𝐹1(𝑠) =

1
𝑠2 + 1

. It can be noted that FT method shows the best results using 𝑁 = 30,
producing absolute error of predominant order between 10−12 and 10−13.

On the other hand, small values of𝑁 (𝑁 = 5 for example) lead to a great loss on the results generation, including
adjustment prevention between the analytical and numerical profiles. In the same way, increasing 𝑁 value without
limit causes an error accumulation that prevents to obtain satisfactory results.
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Figure 1: Behavior analysis of Fixed-Talbot Method for 𝑓1(𝑡).

Table 2: Absolute error of the 𝐹1(𝑠) inversion for Fixed-Talbot.

𝑡 𝑁 = 5 𝑁 = 20 𝑁 = 30 𝑁 = 50 𝑁 = 65
10−4 6.48436 × 10−10 1.80248 × 10−18 1.34441 × 10−17 7.33190 × 10−14 3.99379 × 10−12

1 1.76953 × 10−04 1.35447 × 10−14 1.85518 × 10−13 2.60111 × 10−10 2.70017 × 10−07

2 1.21815 × 10−02 2.76445 × 10−14 3.94240 × 10−13 6.16243 × 10−10 5.40131 × 10−07

3 1.08590 × 10−01 2.66731 × 10−14 4.24577 × 10−13 5.67706 × 10−10 9.02584 × 10−07

4 7.88375 × 10−01 4.32986 × 10−14 1.28563 × 10−13 1.41531 × 10−09 1.03313 × 10−06

5 9.84567 × 10−01 2.74902 × 10−12 1.29829 × 10−12 6.92408 × 10−09 2.23181 × 10−06

6 2.90080 × 10−01 5.98130 × 10−10 1.12521 × 10−13 1.01512 × 10−09 1.89346 × 10−06

7 6.52099 × 10−01 5.35128 × 10−08 2.36399 × 10−12 6.97652 × 10−09 8.91254 × 10−07

8 9.86777 × 10−01 2.14795 × 10−06 4.39981 × 10−13 2.49703 × 10−09 2.18123 × 10−06

9 4.10581 × 10−01 3.56365 × 10−05 2.13118 × 10−12 2.31501 × 10−09 1.82522 × 10−06

10 5.45028 × 10−01 1.09456 × 10−04 2.25441 × 10−12 1.16795 × 10−08 3.62431 × 10−06

3.3 The inversion of 𝐹2(𝑠)
The Figure 2 and Table 3 present the numerical inversion tests of Laplace Transform through the FT formulation for
the function 𝐹2(𝑠) =

1
(𝑠 + 1)(𝑠 + 2)

. For this function, the FT method provides the best results, using 𝑁 = 21 and

with order errors smaller than 10−14, small values of𝑁 still allow the adjustment between the numerical profile and
the analytical one.

It was observed that the highest values for tested 𝑁 do not imply obtaining the best results.
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Figure 2: Behavior analysis of Fixed-Talbot Method for 𝑓2(𝑡).

Table 3: Absolute error of the 𝐹2(𝑠) inversion for Fixed-Talbot.

𝑡 𝑁 = 5 𝑁 = 21 𝑁 = 35 𝑁 = 50 𝑁 = 65
10−4 6.48339 × 10−10 1.14383 × 10−17 3.97685 × 10−16 7.55506 × 10−14 2.22122 × 10−12

1 5.73609 × 10−05 2.77555 × 10−16 1.34264 × 10−12 2.78010 × 10−10 2.34412 × 10−07

2 4.15470 × 10−04 1.26287 × 10−15 2.63343 × 10−12 6.83663 × 10−10 4.38125 × 10−07

3 1.35128 × 10−04 2.49592 × 10−14 2.85700 × 10−12 3.87270 × 10−10 7.00990 × 10−07

4 2.33827 × 10−04 3.25781 × 10−15 5.23285 × 10−12 8.80894 × 10−10 5.90035 × 10−07

5 2.40749 × 10−04 1.02869 × 10−14 2.40214 × 10−12 4.23060 × 10−09 1.25481 × 10−06

6 1.11943 × 10−04 2.83961 × 10−14 2.70387 × 10−12 1.99639 × 10−10 1.15963 × 10−06

7 8.47163 × 10−06 2.42423 × 10−14 2.71073 × 10−12 3.04613 × 10−09 5.80466 × 10−07

8 3.36859 × 10−05 1.67601 × 10−15 6.24825 × 10−12 1.37813 × 10−09 9.15471 × 10−07

9 3.67968 × 10−05 1.41860 × 10−14 6.01121 × 10−12 4.51623 × 10−10 7.10243 × 10−07

10 2.64633 × 10−05 3.81195 × 10−15 3.26354 × 10−12 4.62844 × 10−09 1.59920 × 10−06

3.4 The inversion of 𝐹3(𝑠)

Table 4 and Figure 3 show the results obtained using FT method to invert the 𝐹3(𝑠) =
1

𝑠2 + 𝑠 + 1
test function

numerically. It was identified that the smallest absolute errors were achieved by FT method using 𝑁 = 26, with
error orders lower than 10−13. In the same way as the 𝐹1(𝑠) function, FT method failed to adjust the numerical
profile to the analytical one, using small values of 𝑁, at least for 𝑡 from a certain value, that would be bigger than 2.
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Figure 3: Behavior analysis of Fixed-Talbot Method for 𝑓3(𝑡).

Table 4: Absolute error of the 𝐹3(𝑠) inversion for Fixed-Talbot.

𝑡 𝑁 = 5 𝑁 = 26 𝑁 = 35 𝑁 = 50 𝑁 = 65
10−4 6.48404 × 10−10 3.84891 × 10−18 3.97712 × 10−16 7.38701 × 10−14 5.49314 × 10−12

1 5.73257 × 10−05 4.40758 × 10−14 1.30606 × 10−12 1.86661 × 10−10 2.47359 × 10−07

2 9.19329 × 10−04 7.09987 × 10−14 3.86812 × 10−12 9.08997 × 10−10 4.46360 × 10−07

3 1.22272 × 10−02 1.10467 × 10−14 2.31509 × 10−12 5.99913 × 10−10 8.53194 × 10−07

4 6.18044 × 10−02 2.93376 × 10−14 5.25893 × 10−12 1.41242 × 10−09 8.75644 × 10−07

5 3.98027 × 10−02 6.63497 × 10−14 1.67987 × 10−12 5.85271 × 10−09 1.89949 × 10−06

6 3.61843 × 10−02 1.56541 × 10−13 3.96650 × 10−12 7.77158 × 10−10 1.45922 × 10−06

7 1.90513 × 10−03 1.52587 × 10−13 6.59700 × 10−12 4.27488 × 10−09 7.49758 × 10−07

8 1.53062 × 10−02 1.38153 × 10−13 8.95679 × 10−12 1.89342 × 10−09 1.34076 × 10−06

9 1.40374 × 10−02 2.51534 × 10−15 8.48610 × 10−12 1.25930 × 10−09 8.86057 × 10−07

10 5.97456 × 10−02 3.61577 × 10−14 8.33119 × 10−12 8.25170 × 10−09 3.00815 × 10−06

3.5 The inversion of 𝐹4(𝑠)
The results obtained for the numerical inversion tests of Laplace Transform, using FT technique for the function

𝐹4(𝑠) = −ln 𝑠𝑠 , can be seen in Figure 4 and Table 5. As in the 𝐹2(𝑠) function, the FT method succeeded to adjust
the numerical profiles to the analytical ones even for small values of 𝑁. The best results were generated by using
𝑁 = 20, with absolute errors of the order of 10−12. For 𝑁 > 20 the FT method precision decreases.
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Figure 4: Behavior analysis of Fixed-Talbot Method for 𝑓4(𝑡).

Table 5: Absolute error of the 𝐹4(𝑠) inversion for Fixed-Talbot.

𝑡 𝑁 = 5 𝑁 = 20 𝑁 = 35 𝑁 = 50 𝑁 = 65
10−4 5.34802 × 10−04 1.62359 × 10−12 5.09967 × 10−10 1.88693 × 10−07 4.01118 × 10−05

1 2.14683 × 10−04 1.20048 × 10−12 7.20365 × 10−11 2.61432 × 10−08 1.91622 × 10−05

2 2.71087 × 10−04 1.14575 × 10−12 5.33102 × 10−11 1.67880 × 10−08 1.44873 × 10−05

3 3.04082 × 10−04 1.17150 × 10−12 3.82551 × 10−11 6.60517 × 10−09 1.66946 × 10−05

4 3.27492 × 10−04 1.20436 × 10−12 3.45843 × 10−11 8.92289 × 10−09 1.05753 × 10−05

5 3.45650 × 10−04 1.28252 × 10−12 4.97513 × 10−12 4.55443 × 10−08 1.38678 × 10−05

6 3.60486 × 10−04 1.17683 × 10−12 1.56488 × 10−11 3.54277 × 10−09 9.47657 × 10−06

7 3.73030 × 10−04 1.25588 × 10−12 1.39750 × 10−11 1.30391 × 10−08 1.33711 × 10−06

8 3.83896 × 10−04 1.21280 × 10−12 2.31343 × 10−11 7.01823 × 10−09 7.42630 × 10−06

9 3.93481 × 10−04 1.20747 × 10−12 2.53352 × 10−12 4.68760 × 10−09 4.09336 × 10−07

10 4.02054 × 10−04 1.22035 × 10−12 2.10942 × 10−12 2.03938 × 10−08 8.27742 × 10−06

3.6 The inversion of 𝐹5(𝑠)
As shown in Figure 5 and Table 6, the numerical inversion tests of Laplace Transform through the Fixed-Talbot for
the function𝐹5(𝑠) =

1
(𝑠 + 1)2

are provided. For this function, the profiles obtained by FTmethod fitted the analytical

one, but the best results were achieved using 𝑁 = 21, with absolute errors no more than 10−14.
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Figure 5: Behavior analysis of Fixed-Talbot Method for 𝑓5(𝑡).

Table 6: Absolute error of the 𝐹5(𝑠) inversion for Fixed-Talbot.

𝑡 𝑁 = 5 𝑁 = 21 𝑁 = 35 𝑁 = 50 𝑁 = 65
10−04 6.48371 × 10−10 1.13841 × 10−18 3.64142 × 10−16 7.11932 × 10−14 1.99673 × 10−12

1 4.69460 × 10−05 3.99680 × 10−15 1.69370 × 10−12 3.95322 × 10−10 2.23726 × 10−07

2 4.73666 × 10−05 5.55111 × 10−17 3.24867 × 10−12 8.86549 × 10−10 4.31623 × 10−07

3 8.57669 × 10−04 9.32587 × 10−15 3.24212 × 10−12 4.32038 × 10−10 7.54989 × 10−07

4 5.20617 × 10−04 1.08246 × 10−14 4.33092 × 10−12 1.27362 × 10−09 8.27356 × 10−07

5 3.95956 × 10−04 5.10702 × 10−15 1.45120 × 10−12 4.41068 × 10−09 1.40422 × 10−06

6 7.15473 × 10−04 3.94597 × 10−14 2.92397 × 10−12 2.78925 × 10−10 1.21410 × 10−06

7 4.69021 × 10−04 2.07629 × 10−14 8.78986 × 10−13 3.55986 × 10−09 7.76610 × 10−07

8 1.29752 × 10−04 1.57734 × 10−14 6.81680 × 10−12 2.20561 × 10−09 1.27364 × 10−06

9 5.73337 × 10−05 6.45187 × 10−15 7.05729 × 10−12 1.10524 × 10−09 7.02618 × 10−07

10 1.05502 × 10−04 1.42407 × 10−14 3.32815 × 10−12 6.89744 × 10−09 2.27664 × 10−06

3.7 Results Analysis
Based on the absolute mean error (Eq. (7)), it was possible to determine the optimal 𝑁 on simulation tests for each
of the chosen functions, and the corresponding profiles could be included in the Tables 2- 6 and Figures 1-5.

Despite the strong requirement that “reasonable results” would be those whose absolute errors were less than
10−8, the FT method was able to exceed expectations and provide profiles comparable to those obtained through
analytical expressions at a very low absolute error.

Through the Figures 1-6 and Tables 2-6, it was possible to observe that: i) the best results (with the smallest
errors) were obtained for values of 𝑁 between 20 and 30; ii) the use of other values of 𝑁 (outside this range) were
also able to provide so-called “reasonable results” (within the requirement stipulated here), but with greater absolute
errors; iii) the use of very large 𝑁 values does not imply refined results; iv) in the case of the functions 𝐹1(𝑠) and
𝐹3(𝑠), for small values of𝑁, the FTmethodwas not able to generate profiles adjusted to those obtained by the analytic
expressions for the entire period of 𝑡; v) the functions 𝐹1 and 𝐹3, due to their oscillatory nature, needed more terms
in the sum of the approximate integral (Eq. 5) to achieve the best results. In particular, the function 𝐹1 has the
slowest convergence according to what was found here; vi) the convergence of the functions 𝐹2(𝑠), 𝐹4(𝑠) and 𝐹5(𝑠)
is the fastest among all five ones. In particular, 𝐹2(𝑠) and 𝐹5(𝑠) present a very similar convergence rate despite being
slightly different; vii) from𝑁 = 30, the absolute mean error obtained by the FT method for the five functions seems
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to grow at a similar rate; viii) despite the function 𝐹4(𝑠) being a pseudo-transform associated with a logarithmic
function, the numerical inversion by the FT method proved to be faster than those with oscillatory characteristics.

Figure 6: 𝐸𝑎𝑏𝑠 behaviour in terms of the parameter N.

4 Conclusions
In this paper, an analysis of Fixed-Talbot method for the Laplace Transform numerical inversion was performed
for oscillatory, exponential and logarithmic classes of functions, evaluating the parameter 𝑁 influence and its effi-
ciency on the treatment of tested functions in a comparative study of the approximate results accuracy in relation to
analytical inverse transforms.

Themain contribution of this paper is the recommendation of values for the Fixed-Talbot method free parameter
𝑁 which presents the smallest mean absolute error on the treatment of elementary functions with exponential,
oscillatory and logarithmic characteristics.

The use of 𝐸𝑎𝑏𝑠 as a tool to identify the best parameter 𝑁 for inversion of each test function was also important,
since it showed that the optimal parameter is an intermediate value, and higher values do not imply better results.

Based on the obtained results, another positive point is the viability of Fixed-Talbot method as an numeric alter-
native to deal with Laplace Transform inversion, contributing for the expansion of the applicability of the Transform
for solving, for example, differential equations.

For a future research, we suggest investigating the application of Fixed-Talbot algorithm to Laplace Transform
numerical inversion for functionswith different types of behavior, apart fromoscillatory, exponential and logarithmic
ones.
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