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Abstract

Nuclear reactor core design is an optimization problem concerning the pertinent choice of a series of parameters
that must obey some technical and physical constraints. Several methods have been applied in literature in order
to obtain the optimal solution for this problem. The present work aims to provide a comparative analysis of two
optimization methodologies in the reactor core design, as follows: Invasive Weed Optimization andMany-Objective
Evolutionary Algorithm.
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Resumo

Oprojeto do núcleo de um reator nuclear é umproblema que consiste na escolha pertinente de uma série de parâmet-
ros que devem obedecer a algumas restrições técnicas e físicas. Diversos métodos têm sido aplicados na literatura
especializada de modo a obter-se soluções ótimas para este problema. O presente trabalho tem como objetivo ap-
resentar um análise comparativa de duas metodologias de otimização, quais sejam: Invasive Weed Optimization e
Many-Objective Evolutionary Algorithm.

Palavras-chave
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1 Introduction
The design of a nuclear reactor core is a quite di�cult task where the designer is faced with many restrictions and
many nonlinear relations on variables of the problem. The elements that comprise a nuclear reactor core must
simultaneously meet both operating limits constraints and reactor con�guration limits. The choice of a pertinent set
of parameters is of fundamental importance to design of a nuclear core; for instance, the type of material employed
[1]. Such complex task can be seen as an optimization process on a multimodal high dimensional space. Not so long
ago, traditional gradient-based optimization techniques using linear-programming and perturbation analysis have
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been applied [2]. However, because of the high complexity, nonlinearity, multimodality and the lack of knowledge
about the search domain, the use ofmore robust and appropriate techniques such as SimulatedAnnealing [3], genetic
algorithms [4] and Di�erential Evolution [5] have been also proposed.

Metaheuristics based methods demand the appropriate choice of execution parameters which has considerable
impact on its performance, in fact a set of parameters can lead to a reasonable solution in a timelymanner or complete
failure of the search process.

A newly proposed metaheuristic called Many-Objective Evolutionary Algorithm (MOEA) was investigated. This
optimization method aims to reduce the common problem of diversity loss during the search process. A second
method was also applied to the problem, a numerical stochastic optimization algorithm inspired on colonizing
weeds, InvasiveWeedOptimization (IWO). Thismetaheuristic simulates the adaptative behavior ofweeds, undesired
kind of plants that interfere negatively in agriculture because of their ease of dispersion, rapid growth and contin-
uous production. Essentially, the algorithm comprises three steps: reproduction, spatial dispersal and competitive
exclusion of data structures representing solutions to the problem, the plants. The key concept of this populational
algorithm is based on grouping �tter plants and elimination of inappropriate ones, highlighting the invasive habits
of growth and evolution of the species.

The solutions obtained from the two methods were compared, a comparison with previous works was also per-
formed.

This work is organized as follows: section 2 explains the nuclear reactor core design problem and presents all
parameters to be estimated. Section 3 shows the applied optimization methods details and algorithms. In section
4, the results for each method execution are presented and compared. In section 5, the conclusions for the present
work are presented.

2 The nuclear reator core design problem
We consider a simpli�ed cylindrical three-enrichment-zone pressurizedwater reactor with a typical cell composed of
moderator (light water), cladding, and fuel. Fig. 1 illustrates such a reactor and the dimensions are in centimeters.
The design parameters, which may be adjusted in the optimization process, as well as their variation ranges are
shown in Table 1.

Figure 1: The reactor (a) and its typical cell (b).

The objective of the optimization problem is to minimize the average power peak factor fp of the proposed
reactor for a given average thermal �ux f0, considering as constraints the criticality (ke� = 1.00 ± 0.01) and sub-
moderation. So, the optimization problem can be written as a minimization of the function fp (Rfuel, Rclad, Req,
Enr1, Enr2, Enr3, Mfuel, Mclad) subject to:

Φ
(
Rfuel, Rclad, Req, Enr1, Enr2, Enr3, Mfuel, Mclad

)
= Φ0 (1)

0.99 ≤ ke�
(
Rfuel, Rclad, Req, Enr1, Enr2, Enr3, Mfuel, Mclad

)
≤ 1.01 (2)

dke�
dVm

> 0 (3)

Rfuel,min ≤ Rfuel ≤ Rfuel,max (4)

Rclad,min ≤ Rclad ≤ Rclad,max (5)
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Req,min ≤ Req ≤ Req,max (6)

Enr1,min ≤ Enr1 ≤ Enr1,max (7)

Enr2,min ≤ Enr2 ≤ Enr2,max (8)

Enr3,min ≤ Enr3 ≤ Enr3,max (9)

Mfuel = (UO2, U-metal) (10)

Mclad = (Zircaloy-2, aluminum, 304 stainless steel) (11)

where Vm is the moderator volume and the min and max subscripts refer to the lower and upper limits of the pa-
rameter ranges. The nature and ranges of each parameter are shown in Table 1.

Table 1: Parameter Ranges.

Parameter Symbol Ranges

Fuel Radius Size (cm) Rfuel 0.508 to 1.27

Cladding thickness (cm) Rclad 0.0254 to 0.254

Moderator thickness (cm) Req 0.0254 to 0.762

Enrichment of zone 1 (%) Enr1 2.0 to 5.0
Enrichment of zone 2 (%) Enr2 2.0 to 5.0
Enrichment of zone 3 (%) Enr3 2.0 to 5.0

Fuel Material Mfuel U-metal or UO2
Cladding Material Mclad Zircaloy-2, aluminum or 304 stainless steel

The HAMMER system [6] was used to solve cell and di�usion equations. It performs a multigroup calculation
of the thermal and epithermal �ux distribution from the integral transport theory in a unit cell of the lattice.

3 Optimization methods

3.1 Di�erential Evolution
In order to assess the complexity of the nuclear reactor design for any metaheuristic method con�dence regions was
obtained for each parameter of a solution found by a Di�erential Evolution (DE) execution. DE is a well known and
popular metaheuristic already applied to this problem before [5]. It was developed by Storn & Price [7] and the main
idea is to apply the so-called evolutionary operators to modify a population of vectors, each vector characterizes a
possible solution of the problem. The applied operators aremutation, crossover, and selection. Di�erential Evolution
shares several features with the basic cycle of an evolutionary algorithm as shown in Fig. 2.

Themutation operator is applied to create new individuals from a group of individuals of the previous generation.
It consists of a weighted addition of the di�erence between two randomly selected vectors v1, v2 to a third vector v3
which is also randomly selected. Theweight, namedF, is a con�guration parameter of the algorithm, controlling the
variation level of vector di�erence. To the modi�ed vector vmut, resulting from the previous operations, a crossover
is applied. A fourth random vector v4 is again selected from the population and its components are mixed to the
modi�ed vector vmut, generating a test vector vtest. At last, the selection operator is used, by the application of the
objective function to vtest and v4 , in order to identifywhich one is the best solution candidate. Then, the chosen one is
transferred to the next generation. This process repeats until the stopping criterion is reached, usually characterized
by the minimization or maximization of the objective function.
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Figure 2: Flow Chart for Di�erential Evolution.

Di�erential Evolution is able to handle non-di�erentiable, nonlinear andmulti-modal objective functions. These
aspects are extremely bene�cial in cases of complex physical problems, as is the case of the nuclear reactor core
design. By the fact that stochastic perturbation can be made independently, the method allows parallelization and
is considered e�cient in dealing with objective functions of high computational cost. Di�erential Evolution is also
easy to use, requiring an input of few con�guration parameters, and it also has good convergence properties, i.e.,
good convergence to the global minimum in independent tests [7].

3.2 Invasive Weed Optimization
The key idea of the algorithm comes from evolutionary aspects of essential features of survival and evolution in
nature. The method takes into account the behaviour of invasive weeds, which is a kind of plant with very peculiar
features. Weeds are commonly recognized as plants that grows in undesirable locations and, because of its invasive
behavior and intense capacity of reproduction, threatens agriculture. Considering that these plants demonstrate
a great capacity of adaptation in di�erent environments, their hability originated the computational algorithm, as
described in details by [8]

Some speci�c parameters must be considered in order to successfully simulate the colonizing behavior of weeds:
a limited search area is de�ned and a �nite number of seeds is scattered over the explored �eld. Each of the seeds
sprout a new plant, which in turn produce new seeds.The seeds will take its randomly de�ned location in the search
�eld to cultivate new plants and this continuous process leads to increasingly �t weeds. A de�ned number of �tter
members of the population naturally survive over time and produce new seeds, de�ning the cyclic process of survival
and development of weeds. The algorithmic �ow is depicted in Fig. 3.

The algorithm consists of four basic steps:

(1) Startup of the population:
A set ofN0 initial guesses, denoting the seeds, is randomly created and scattered over the d-dimensional search
area, limited by the lower and upper bounds, represented by Li and Ui , respectively, for i = 1, … , d. The
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Figure 3: Flow Chart for Invasive Weed Optimization.

starting population of weeds is created by Eq. 12:

P(0)i = Li + ((Ui − Li) ri) (12)

where ri is an uniformly distributed random number.

(2) Reproduction:
The objective function value of every element of the population is evaluated according to the objective function.
This calculation points out the lowest and highest objective function value and de�nes the number of seeds
each plant will be able to produce respecting the linear relationship among its own objective function value
and the rest of the population. The best individuals in the population (the ones with more chance to survive)
will produce more seeds and the number of new seeds will be limited.
This procedure provides the opportunity for less �tted individuals to produce new seeds, even in a smaller
amount, the reason is that it is possible these individuals are located at an interesting position and they may
contribute to the process of optimization.

(3) Spatial dispersal:
The new seeds must now be scattered. They must follow a normally distributed random dispersal over the
d-dimensional search area with zeromean and variance calculated according to Eq. 13 which ensures the new
seeds are going to be scattered close to the parent plant. Individuals with best objective function value will be
able to produce more seeds and consequently they will have more new plants, sprout from its own seeds, in
their neighborhood.

�iteration = ��nal +
(itmax − it)�

it�max
(�initial − ��nal) (13)
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The nonlinear reduction of the variance according to nonlinear modulation index �, from �initial to ��nal, pro-
vides a good e�ciency in spreading out the new seeds closer to the plants with higher objective function value,
grouping �tter plants and isolating the inappropriate ones. This behavior favors the elimination of plants with
low objective function value and performs a more re�ned search as the iterations increase and the plants get
closer to the solution of the problem.

(4) Competitive exclusion:
After reproduction and spatial dispersal of new plants the colony must keep a maximum number of plants in
the population, de�ned by the parameter pmax. A mechanism of elimination based on a kind of competition
is necessary. When all produced seeds are located in their respective places they are ranked, plants and their
o�spring with better objective function value survive and gain a new opportunity to reproduce. Weeds with
lower objective function value are eliminated.

3.3 Many-Objective Evolutionary Algorithm
Many-Objective evolutionary algorithm is a general name given to a class of optimization methods. The present
work will explore one of this methods proposed by Zhenan He and Gary G. Yen [9], which is based on a strategy
consisting of reducing the objective search space and improving the diversity of solutions. This new meta-heuristic
optimization method is called by the authors as Many-Objective Evolutionary Algorithm based on objective search
space Reduction and Diversity improvement (MaOEA-R&D) and it aims to overcome problems such as low diversity
of solutions, a common problem of many multi-objective evolutionary algorithms [9].

As thename suggests, this algorithmhas two stages and each stage has its ownpopulation,mutation and crossover
rates. The mutation and crossover operators chosen by the authors to tackle the nuclear core design problem are the
simulated binary crossover [10] and polynomial mutation [11].

The �rst stage (Fig. 4) reduces the objective search space by �nding target points for each objective, those points
are intended to be far from each other and achieve the extreme solution for each objective. In the process of �nd-
ing those points, the algorithm classi�es individuals (i.e. solution candidates for the problem) in subpopulations,
generates o�springs for each subpopulation by randomly choosing two individuals and applying the crossover and
mutation operators, then it ranks them by the Achievement Scalarizing Function (ASF). Finally, the target points
are selected among all individuals based on the ASF for each objective.

The second stage (Fig. 5) improves diversity and updates the target points if any better solution is found. First
a new population is generated around the target points then o�springs are generated from the population, these
new individuals are classi�ed as inside or outside some range acording to their objective function value. If there are
enough individuals inside the range to update the whole population, the method sorts them by Pareto-dominance.
Subsequently, individuals are selected from the non-dominated ones by a diversity operator. In case the algorithm
does not get enough individuals, the population is completed with dominated ones with larger closest distance from
non-dominated individuals. Also if there are not enough individuals inside the range the population is completed
with individuals outside the range closest to the target points and their middle points. After the new population is
selected, the target points and bounds are updated.

The diversity operator works by removing individuals that are closer to other individuals, it aims to keep the
diversity and removes the redundancy of the population.

4 Execution

4.1 Di�erential Evolution
Di�erential Evolution was executed 10 times and, on each run, the same con�guration parameters were used, as
described in Table 2). Since it is established that the optimum value for the objective function is unknown, the
stopping criterion was �xed as a maximum number of iterations.

These con�guration parameters were established after several tests, and they di�er from others previous use of
Di�erential Evolution in the reactor core design problem, as showed in [5]. Table 3 shows the results for all 10
executions of the method. The parameters found are on the �rst columns, followed by their fp and the number of
necessary objective function (NFE) evaluations until the best result was obtained.

Analyzing Table 3, it is possible to see that good results were obtained for at least 70% of the runs, reaching an
average objective function value as low as 1.2769. The best objective function value was obtained on two di�erent
runs for di�erent parameters combinations which could indicate that the problem has several local minima on the
possible solutions search region. In addition, it suggests that the problem has multiple global solutions, since the
best calculated objective function value is exactly the same for runs 5 and 6. However, it will be shown that this is
not the case.
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Figure 4: Flow chart for the �rst stage of MaOEA-R&D.

Table 2: Con�guration parameters for Di�erential Evolution.

Parameter Value
Population Size (NP) 3000

Mutation scaling factor (F) 0.5

Crossover rate (CR) 0.9
Maximum iterations 300

Using the methodology described on [12], it was possible to obtain con�dence regions for the solution variables
along the optimization process Fig. 6. The natural high number of objective function evaluations of Di�erencial
Evolution can be used directly to generate regions around the estimated parameters, allowing a more detailed in-
vestigation of the search intervals. However, because the reactor design optimization does not correspond to a least
squares minimization problem, it is impossible to consider statistically that these are con�dence regions. It is only
possible to say that the objective function varies by less than 2% inside the regions, turning all the encountered solu-
tions very similar. It is possible to devise an idea of how the objective function behaves near a solution. The red dot
in the Fig. 6 indicates the best solution found on the present work.

Analyzing the regions showed in Fig. 6, it can be noticedmany correlations between some of the parameters. For
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Figure 5: Flow chart for the second stage of MaOEA-R&D.

Table 3: Di�erential Evolution Results.

Run Rfuel(cm) Rclad(cm) Req(%) Enr1(%) Enr2(%) Enr3(%) Mfuel Mclad fp NFE

1 0.9525 0.1343 0.6963 2.2340 2.4325 4.4988 U-Metal SS-304 1.2756 112.738
2 0.8418 0.0860 0.6378 2.0925 2.2720 4.1264 U-Metal SS-304 1.2829 146.307
3 1.0081 0.1487 0.7450 2.3567 2.7746 4.7514 U-Metal SS-304 1.2826 127.517
4 1.0628 0.1438 0.7620 2.3794 2.5731 5.000 U-Metal SS-304 1.2748 151.039
5 0.8595 0.1108 0.6521 2.2094 2.3331 4.4609 U-Metal SS-304 1.2724 164.161
6 1.0032 0.1122 0.7213 2.2248 2.3556 4.6287 U-Metal SS-304 1.2724 297.914
7 0.9604 0.1140 0.6997 2.1614 2.3785 4.3237 U-Metal SS-304 1.2839 165.827
8 1.1329 0.1006 0.7620 2.000 2.1397 4.1210 U-Metal SS-304 1.2763 152.180
9 1.0102 0.1415 0.7377 2.3415 2.5104 4.8573 U-Metal SS-304 1.2739 161.723
10 0.8690 0.1189 0.6534 2.1907 2.3217 4.3804 U-Metal SS-304 1.2747 160.094

Average 0.9700 0.1211 0.7067 2.2190 2.4091 4.5149 U-Metal SS-304 1.2769 153.950
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example, a correct estimation of the parametersEnr1, Enr2, Enr3 andRclad highly depends on each other estimation.
The parameter combinations showed in Fig. 6 have signi�cantly high indications of correlations. However, Rfuel
only correlate with Req. All other possible regions not shown in 6 present sparse shapes similar to Fig. 3h which
means that they do not indicate the presence of correlation amongst the parameters. Applying the information from
this correlation analysis may be very helpful for devising an optimization strategy or algorithm.

4.2 Invasive Weed Optimization
For the IWO 10 runs of the algorithm were executed so that a comparison of solutions was possible. All executions
were carried out with the con�guration parameters listed in the Table 4.

Table 4: Con�guration parameters for Invasive Weed Optimization.

Parameter Value
Number of initial population (N0) 10

Maximum number of iterations (itmax) 50
Maximum number of plant population (pmax) 15

Maximum number of seeds (smax) 5
Minimum number of seeds (smin) 0
Nonlinear modulation index (�) 3

Initial value of standard deviation (�initial) 1
Final value of standard deviation (��nal) 0.01

Initial search area (xini) Concerning to Table 1

The appropriate choice of the nonlinear modulation index (�) is essential in the convergence of the IWO. This
coe�cient makes de evolutionary behavior of the population of weeds changes through time. This is a desirable
behavior, since it is expected that the algorithm carries out a wider search in the �rst few iterations and then the
results are �ne tunned as they aproach the maximum number of iterations (itmax). Directly related to the choices
of the initial and �nal value of standard deviation (�initial and ��nal, respectively), the nonlinear modulation index
decreases the standard deviation of the iteration as smooth as possible. Its choice is based on the results presented
in [8].

The number of initial population (N0), as well as the minimum andmaximum number of seeds (denoted by smin
and smax, respectively) are based on comparative tests for the problem and the results presented in [8]. A positive
caracteristic of the algorithm is its rapid convergence, partly justi�ed by the reduced number of individuals in the
population and the limited rate of reproduction of new seeds. The increase in the value of these parameters must be
evaluated together with the computational time due to the comparison between the individuals of the population in
the competitive exclusion stage.

Due to the reduced range of each of the problem variables (as shown in Table 1), it was not necessary to conduct
a very extensive exploratory search in the �rst few iterations, consequently the initial standard deviation (�initial)
does not assume a very high value, which increases the chance of the population to stay in the limits for each of the
variables of the model. This fact has accelerated the convergence of the algorithm given that less operations were
necessary to generate new estimates for the new seeds of the population. The results for all 10 executions of the IWO
are listed in Table 5.

4.3 Many-Objective Evolutionary Algorithm
The parameters in table 6 were initialy set as equal for both phases of the algorithm. The size of the population
and maximum iterations were chosen in order to keep the consistency with the IWO. The crossover rate (CR) and
mutation rate (MR) were simple chosen as standard or "best practices" from the literature. The CR 1.0 means that
every new solution generated contains part of two other solutions, and the MR 0.05 was the �rst choice for a �xed
rate against the usually used 1

NP
. The mutation and crossover distribution index are the same used and suggested by

the authors of the algorithm [9].
The algorithm has a modi�cation in the diversity operator: an additional criterion for the removal of the indi-

viduals with closest distance. Since the distance between Ii to Ij is equal to the distance of Ij to Ii , any of those
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(a) Enr1 xEnr2 (b) Enr1xEnr3

(c) Enr2 x Enr3 (d) Rclad x Enr1

(e) Rclad x Enr2 (f) Rclad xEnr3
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(g) Rfuel x Rclad (h) Rfuel x Req

Figure 6: Regions of the problem space where the objective function varies by less than 2% around the best estimated
parameters.

Table 5: Invasive Weed Optimization results.

Run Rfuel(cm) Rclad(cm) Req(%) Enr1(%) Enr2(%) Enr3(%) Mfuel Mclad fp
1 0.694554 0.108361 0.569140 2.313048 2.602430 4.479661 U-Metal SS-304 1.2845
2 0.901909 0.120486 0.670214 2.185427 2.359647 4.389187 U-Metal SS-304 1.2745
3 0.883523 0.119866 0.671925 2.221883 2.623585 4.340446 U-Metal SS-304 1.2885
4 0.588545 0.141780 0.504686 2.596281 2.816056 4.996377 U-Metal SS-304 1.2770
5 1.077993 0.104849 0.743299 2.008470 2.312723 3.956182 U-Metal SS-304 1.2876
6 0.950361 0.219712 0.734688 2.410124 4.121573 4.114011 U-Metal SS-304 1.2879
7 0.959633 0.160277 0.705816 2.427750 2.706547 4.960727 U-Metal SS-304 1.2774
8 0.941049 0.233515 0.727786 2.543370 4.214097 4.440953 U-Metal SS-304 1.2894
9 1.072151 0.151212 0.758954 2.278674 2.502342 4.688076 U-Metal SS-304 1.2739
10 0.795574 0.089516 0.614756 2.013403 2.348278 3.819981 U-Metal SS-304 1.2860

Average 0.8865292 0.1449574 0.6701264 2.299843 2.8607278 4.4185601 U-Metal SS-304 1.28267

Table 6: Con�guration parameters for MOEA.

Parameter Value
Population Size (NP) 3000
Mutation rate (MR) 0.05
Crossover rate (CR) 1.0

Mutation Distribution Index 20
Crossover Distribution Index 20

Maximum iterations 300
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(a) Space Reduction Phase Convergence. (b) Solve Reduced Phase Convergence.

Figure 7: Convergence of �rst and second phases of the Many-Objective Evolutionary Algorithm.

individuals can be removed. In the original algorithm the �rst is removed; here, the individual with worst objective
function value is removed. This modi�cation implies in keeping the best individuals in the population while the
diversity is unchanged.

Table 7 shows the results of the �rst phase (reduce space) of the algorithm, themain objective of it is to �nd target
points to the next phase. The highlighted line in Table 7 corresponds to the best result obtained in phase 1 of the
method.

Table 7: First Phase - Many-Objective Evolutionary Algorithm Results.

Run Rfuel(cm) Rclad(cm) Req(%) Enr1(%) Enr2(%) Enr3(%) Mfuel Mclad fp Iteration

1 0.6955 0.1273 0.5906 2.1511 3.5983 3.5696 U-Metal SS-304 1.2991 60
2 0.7377 0.1385 0.6068 2.3734 3.0462 4.4227 U-Metal SS-304 1.2938 60
3 0.6009 0.1248 0.5308 2.5877 2.8790 4.9992 U-Metal SS-304 1.2818 189
4 1.0454 0.2262 0.7335 2.4601 2.8601 4.9169 U-Metal SS-304 1.3109 78
5 0.7913 0.1354 0.6214 2.2978 2.5802 4.4700 U-Metal SS-304 1.2791 99
6 1.0681 0.1619 0.7531 2.3826 2.5564 4.9998 U-Metal SS-304 1.2708 87
7 0.6429 0.2092 0.5712 2.8077 4.2341 4.8901 U-Metal SS-304 1.2953 45
8 0.9422 0.2321 0.7543 2.6342 4.5862 4.5677 U-Metal SS-304 1.2886 60
9 0.9002 0.1270 0.6886 2.3561 2.6111 4.7976 U-Metal SS-304 1.2779 129
10 0.6620 0.1205 0.5589 2.4914 2.7247 4.8921 U-Metal SS-304 1.2793 114

Average 0.8083 0.1607 0.6399 2.4503 3.1546 4.6460 U-Metal SS-304 1.2882 94.5

Fig. 7a and Fig. 7b shows the progress of the best solution in each phase. In Fig. 7, each di�erent color represents
a di�erent execution. For the �rst phase (reduce space) a number for maximum iterations between 50 and 100
was considered a good choice. On the other hand, for the second phase 300 iterations were not enough to get to a
convergence. It indicates that more iterations can be used and probably better solutions can be found. The e�ort to
improve diversity of solutions is the main reason the algorithm keeps evolving.

Table 8 presents the result for the second phase. The variability of the solutions found is noticeable, with the
di�erence between the best and worst solution being almost 0.02 . However, the three best solutions found have a
very similar objective function value, with run 3 and 6 having their parameters very close and the run 2 di�ering in
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Table 8: Second Phase - Many-Objective Evolutionary Algorithm Results.

Run Rfuel(cm) Rclad(cm) Req(%) Enr1(%) Enr2(%) Enr3(%) Mfuel Mclad fp Iteration

1 0.7927 0.2114 0.6600 2.5009 4.2088 4.2137 U-Metal SS-304 1.2891 204
2 0.8877 0.1581 0.6725 2.4210 2.5757 4.9494 U-Metal SS-304 1.2705 285
3 0.5936 0.1254 0.5034 2.4323 2.6556 4.6449 U-Metal SS-304 1.2782 297
4 1.0478 0.1642 0.7373 2.3718 2.5239 4.9610 U-Metal SS-304 1.2698 264
5 0.8335 0.1463 0.6411 2.3410 2.5979 4.6325 U-Metal SS-304 1.2771 294
6 1.0681 0.1619 0.7531 2.3827 2.5564 4.9999 U-Metal SS-304 1.2708 3
7 0.9010 0.2533 0.7290 2.7275 4.7045 4.7056 U-Metal SS-304 1.2865 285
8 1.0020 0.1399 0.7147 2.1505 2.5997 4.1785 U-Metal SS-304 1.2849 276
9 0.8950 0.1273 0.6890 2.3568 2.6104 4.7907 U-Metal SS-304 1.2777 279
10 0.7491 0.1243 0.6071 2.4227 2.5553 4.8716 U-Metal SS-304 1.2734 294

Average 0.8771 0.1612 0.6707 2.4107 2.9588 4.6948 U-Metal SS-304 1.2778 246

various parameters. The highlighted line in Table 8 corresponds to the best result obtained in phase 2 of the method.

5 Conclusions
In the present work, two newmetaheuristics were applied to the design of nuclear reactor core problem. The nuclear
design problemwas initially described along with an attempt of qualitative assessment of the complexity of the prob-
lem. For this, the attainment of a set of graphs describing the typical behaviour of the objective function when close
to a solution was performed by using a classic metaheuristic algorithm. In the present case, Di�erential Evolution
was used. Invasive Weed Optimization, an metaheuristic based on a biological metaphor for plant adaptation, was
then applied to the problem. It is shown that Invasive Weed Optimization results is able to attain a solution with
reasonable sucess. Although the solution found by the method is not the best found so far, the method should still
be considered for the present problem in view of its fast convergence and simpler con�guration. Many Objective
Evolutionary Algorithm on the other hand, as the second metaheuristic here applied to the problem, was able to
found a solution that outperform previous solutions found by di�erent methods, even considering that we limited
to 300 the number of iterations of its convergence phase.
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