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Abstract

In this work, we present themost recent numerical results in a nodal approach, which resulted in the development of
a new numerical spectral nodal method. This method is based on the spectral analysis of the multigroup, isotropic
scattering neutron transport equations in the discrete ordinates (SN) formulation for �xed-source calculations in
non-multiplying media (shielding problems). The numerical results refer to simulations of typical problems from
the neutron shielding area, in two-dimensional Cartesian geometry and are compared with the traditional Diamond
Di�erence �ne-mesh method results, used as a reference, and the spectral Green’s function - constant nodal (SGF−
CN) method results.
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Resumo

Neste trabalho, apresentamos os mais recentes resultados numéricos de uma abordagem nodal (malha grossa), que
resultou no desenvolvimento de um novo método da classe dos espectro-nodais, na formulação determinística das
ordenadas discretas (SN), aplicado no cálculo de transporte de nêutrons multigrupo, considerando problemas de
blindagem (fonte-�xa). Estes resultados numéricos se referem às simulações de problemas típicos da área de física
de reatores, em geometria bidimensional cartesiana retangular e são comparados com o tradicionalmétodo demalha
�na Diamond Di�erence (DD), usado como referência e o método de malha grossa spectral Green’s function (SGF).

Palavras-chave
Teoria de transporte de nêutrons ∙ Cálculos de Blindagem ∙ Métodos Espectronodais

1 Introduction
Modeling neutron transport problems is a complex task and to solve it is necessary to adopt amathematical/computa-
tional strategy. The solution may be following the line of the probabilistic school, whose basic philosophy is to
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approximately solve the exact problem, eg, Monte Carlo methods [1], or the deterministic school whose philosophy
is to solve exactly an approximate problem, i.e., SN discrete ordinate methods [2].

The study of deterministicmathematicalmodels for the neutral particle transport theory has its originswithin the
Boltzmann equation, �rst formulated for the kinetic theory of gases more than a century ago [3]. The mathematical
methods used to solve these transport equations have been developed to analyze radiative transfer problems in the
1930s [4, 5]. The neutron transport �eld was developed almost independently of the gases theory or the radioactive
theory, themain reason for the attention given to the neutron transport theory, was its belonging to the atomic energy
program, highly developed in the early years of the nuclear age.

The linearized Boltzmann transport equation for neutrons, in its general form, is characterized as a �rst-order
linear partial integro–di�erential equation. It depends on seven independent variables: three spatial coordinates,
two angular (�, �), one for the neutron energy (E), and one for time (t) [2, 3], to describe the average behavior of the
entire neutron population which shows a high complexity for its solution.

The nodal schemes (coarse mesh), as deterministic models, constitute a class of numerical methods developed to
generate precise solutions for the Boltzmann equation for neutron transport [6, 7]. These methods are algebraically
and computationallymore laborious than the traditional �ne-mesh numericalmethods, i.e., theDiamondDi�erence
(DD) method, [2], however, they present greater precision in numerical solutions for coarser spatial grids. For this
reason, these numerical methods, and their possible solution algorithms using direct or iterative schemes, have been
the focus of several studies in recent years [8, 9, 10].

Solve the neutron transport problems in the SN formulation, for two-dimensional Cartesian geometry, using a
�ne mesh method such as DD, also presents a series of disadvantages from the computational point of view. Among
themwe canmention the di�culty to obtain solutionswith goodprecision, demanding great re�nement of the spatial
domain used, resulting in a high computational cost. It would be convenient to perform a discretization of the spatial
variables, using coarse mesh (nodal) methods, as a way to reduce this cost without a�ecting the precision of the
results. Within this context, we canmention the numerical methods of spectral-nodal class [11, 8, 12, 13, 14], which
had their genesis with the work of Larsen [15]. To determine the discretized equations for these nodal methods, in
addition to the use of the SN equations, there are also utilize auxiliary equations in the nodes of the analyzed regions.
These equations hold parameters that are determined in such a way as to preserve the local analytic general solution
of the problem within each spatial node, increasing the degree of complexity in obtaining the constitutive equations
of these methods.

Opposite to what is made with the traditional spectral-nodal numerical methods to solve the neutron transport
equation in the SN formulation; where it is necessary to obtain the auxiliary equations, burdening the simulations
from the point of view of algebraic development and probable time of execution of the computational codes; it was
proposed to obtain the discrete neutron transport equations, in the formulation of Discrete Ordinates, SN , starting
from the calculation of arbitrary parameters for the solution of the intra-nodal SN equations, initially knowing the
incident �uxes and the neutron sources inside the spatial nodes of the grid of the studied problem. With this pro-
cedure, it is possible to obtain all the outgoing angular �uxes in the boundaries of the spatial nodes, to calculate
some other quantities of interest for this type of simulation, such as the scalar �uxes, absorption rates in the homo-
geneous regions of the spatial domain, and neutron leakage rates in the external boundaries of the analyzed domain.
The procedure described above was the baseline for the development of the Spectral Deterministic Method (SDM)
[9, 16, 17, 18] and the Response Matrix (RM) method [10].

In this work we present the most recent advances in the development of the Spectral Deterministic Method,
SDM, for neutron shielding problems, considering themultigroup neutron transport equation,X,Y geometry, in the
formulation of discrete ordinates (SN), where the transverse leakage terms were treated as constants.

This paper is organized as follows: The Section 2. presents the Mathematical Preliminaries with the spectral
analysis of multigroup transport equations in discrete ordinates formulation in X,Y geometry. Section 3., introduce
and describe the iterative methodology of the multigroup Spectral Deterministic Method – Constant Nodal (SDM –
CN) in X,Y geometry. Section 4 presents the comparison of the numerical results of the SDM−CN with the results
of the DD, SGF − CN, and other methods to verify its accuracy and consistency. Finally, Section 5 exposes a brief
discussion of the results and suggestions for future work within this line of development.
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2 Mathematical Development
Considering the SN stationary equations in a rectangular domainD of width X and height Y, with linearly anisotropic
scattering and interior �xed – source (Qg):
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1
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where  m,g(x, y) ≡  g(x, y, �m, �m),

with prescribed boundary conditions represented in the form

 m,g(0, y) = pm,g(y) , �m > 0,
 m,g(X, y) = qm,g(y) , �m < 0,
 m,g(x, 0) = um,g(x) , �m > 0,
 m,g(x, Y) = vm,g(x) , �m < 0. (2)

for g = 1 ∶ G, m = 1 ∶ M,M represents the total number of discrete directions, which for the x, y geometry case, is
calculated by the expression

M =
N(N + 2)

2 , (3)

N is the approximation order SN . The angular quadrature, used for this work is the LQN quadrature (Level Sym-
metric Quadrature) [2], where the !m are the weights of the angular quadrature associated to the discrete directions
represented by the pair (�m, �m).

Considering an arbitraryΩx ×Ωy spatial grid on the domain D, as shown in Fig.1, where each spatial cell Γj have
width ℎxi and height ℎyj , constant macroscopic cross sections �(0)ijsg′→g
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Figure 1: Discretization of the two-dimensional domain D in I × J spatial cells Γij of width ℎxi and height ℎyj

�Tg(x, y), describe the g-th group macroscopic total cross section

�(0)sg′→g
(x, y), represents the zero’th component of themacroscopic g-th di�erential scattering cross section from group

g’ to group g,
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�(1)sg′→g
(x, y), �rst – order component of the macroscopic g-th di�erential scattering cross section from group g’ to

group g,
Qg(x, y), isotropic neutron source in energy group g.
It is assumed that these quantities are piecewise constant functions in D [13].

In order to obtain the one–dimensional transverse – integrated SN nodal equations with linearly anisotropic
scattering, the transverse–integration operators, are de�ned

1
ℎus

u
s+ 12

∫
u
s− 12

(⋅)du , (4)

where u = x (or y) and s = i (or j).

At �rst we choose to integrate the Eq. (1) in the y direction, where u = y and s = j, to obtain the transverse–
integrated SN nodal equation for the x direction
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x ∈ Γij , i = 1 ∶ I, j = 1 ∶ J, m = 1 ∶ M, g = 1 ∶ G . (5)

Similarly, is applied the operator (4) to Eq. (1) considering u = x and s = i and Eq. (1) is integrated over x to obtain
the one-dimensional transverse-integrated SN nodal equation for the y direction
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where the group mean angular �uxes in each coordinate direction inside the Γi j node are de�ned by

 ̃jm,g(x) =
1
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 m,g (x, y)dy (7)

and

 ̂im, g(y) =
1
ℎxi

x
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 m, g (x, y)dx . (8)

The equations (5) and (6) represent two systems of GM ordinary di�erential equations in coordinate directions
x and y, respectively. Each system has 2GM unknowns, GM unknowns represented by  ̃jm,g(x) (or  ̂im,g(y)) and
GM unknowns represented by the transverse leakage terms. We assume that these transverse leakage terms are
constant along the edges in each Γi j nodes, constituting the only approximation performed at calculations in this
work [14] [19]. Then, these transverse leakage terms approximation are presented as
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Considering this, it is assumed that these constants correspond to the mean values of the angular �uxes along the
sides of the analyzed node, therefore
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After assuming these approximations, the transverse leakage terms can be de�ned as
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Consider constant approximations for the transverse leakage terms, the objective is to ensure the uniqueness
for the solution of the transversally integrated SN equations within each spatial discretization node, Γij , with the
boundary conditions and the continuity conditions at the interfaces of the nodes. In other words, to obtain two
systems with GM equations and GM unknowns, coupled by the transverse leakage terms [19][20]. The constants
to approximate these terms are chosen conveniently because it is desired to preserve the average �uxes on the sides
of the node Γij . Therefore, using the de�nitions (13) and (14) in Eqs. (5) and (6), we can rewrite the SN transversely
integrated equations in the form
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The equations systems (15) and (16), considering a bi–dimensional domain, with uniform physical material pa-
rameters in each Γij node to be analyzed, have a general solution, in the form

 ̃m,g(x) =  ̃ℎm,g(x) +  ̃pm,g , x ∈ Γij , (17)

for the equation system (15), and
 ̂m,g(y) =  ̂ℎm,g(y) +  ̂pm,g , y ∈ Γij , (18)

for the equation system (16). Here the superscript p indicates the particular solution that is spatially constant in
Di j and the superscript ℎ indicates the homogeneous component of the solution, which satis�es the homogeneous
equation associated with Eqs. (15) and (16). In order to determine the particular solution of the system (15), the
�uxes  ̃jm,g(x) are substituted for  ̃pm,g, obtaining
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where �a,b = { 1 para a = b
0 para a ≠ b , represents the Krönecker delta.

Making the same analysis for the system given in Eq. (16), it is obtained
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The homogeneous solution of Eq. (15) has the form

 ̃ℎjm,g(x) = axm,g(�x)e

− (x − xj− 1
2
)

�x , m = 1 ∶ M, x ∈ Γij , (21)

Substituting the equation (21) into the homogeneous part of Eq. (15), considering the source Qijg = 0 and L̂i,jm,g =
0, is obtained
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An analogous procedure to that done for Eq. (15), can be performed to solve the system of equations (16), con-
sidering for this case L̃i,jm,g = 0, obtaining the system of equations
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Both equations (22) and (23), in a matrix notation, can be written in the form

Aa(�) = 1
�a(�),

where, similar to the one-dimensional case [21], A is a square realmatrix, of orderGM×GM, and the eigenvalues
�l are all symmetric and appear in pairs of opposite signs, due to the symmetry of angular quadrature used.

Therefore, the local general solution for each SN equations system within each nodeΓij , (15) and (16), respec-
tively, appear in the form
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and
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where the parameters �xl and �
y
l are arbitrary constants to be determined according to the boundary conditions

of the spatial discretization node.
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3 Iterative process of the multigroup Spectral Deterministic Method–
Constant Nodal(SDM–CN)

In this section it is described the iterative process for solving the SDM − CN neutron transport equation, spatially
and angularly discretized in the multigroup formulation [22].

After obtaining the �xl and �yl parameters, the outgoing �uxes of the analyzed node are computed using the
same equations, (24) and (25). Then, the �l parameters and the outgoing �uxes at each spatial node’s output are
calculated using Eqs.(24) and (25). Reached this point, it becomes necessary to de�ne the concept of sweeping the
spatial discretization x, y geometry grid, to understand the dynamics of calculating the outgoing angular �uxes in the
SDM−CN iterative scheme. Similarly to the iterative algorithm of the SDM method for one-dimensional problems
[21], the iterative algorithm for the X,Y geometry case is essentially di�erent from the transport sweeps employed
by the methods DD [2] and SGF − CN [12].

By de�ning the sweeping concept for a X,Y geometry spatial discretization grid using the SDM − CN method,
the coordinate system in Cartesian plane is initially taken as reference. The coordinate axes (�m; �m) are oriented in
the directions of (x; y) respectively. Both axes range from negative to positive in the Cartesian coordinate system.

The numerical iterative process [9] is initiated by performing the spectral analysis of Eqs. (5) and (6) at the chosen
node to start the sweeping process. This node Γi, j can be located on the �rst or last row of the spatial discretization
grid by combining it with the �rst or last column of the same grid. For this paper, we establish the starting node
at the combination, �rst bottom row with �rst column on the left side. Once obtained the axm,g(�xl) and a

y
m,g(�

y
l)

eigenvectors with the corresponding eigenvalues �l together with the particular solutions  ̃pn, g and  ̂
p
n, g we proceed

with the calculation of the �xl and �
y
l parameters at the �rst node Γi, j using the Eqs. (24) and (25) together with the

pre-established boundary conditions on the left and lower sides of the node. For the incoming angular �uxes on the
upper and right interfaces of the analyzed node, an initial estimate is made. Obtained the �xl and �

y
l parameters in

the �rst node, using again the Eqs. (24) and (25), it can be determined the outgoing angular �uxes of �rst node in
all energy groups.

Advancing to the right of the starting node, applying the continuity conditions we can use the outgoing angular
�uxes in all energy groups in the right interface of this node as initial approximation for the incoming angular �uxes
for the left side of the adjacent node. In the adjacent node, the incoming angular �uxes on the right and top interfaces
continue as initial approximations. With the approximation of the incoming angular �uxes on the node, is possible
to calculate the �l parameters and the outgoing angular �uxes.

Going from left to right of the initial Γi, j node at the initial line, the Eqs. (24) and (25) are used to determine
the �l parameters and the outgoing angular �uxes,  ̃jm,g and  ̂im,g, at the interfaces of the remaining nodes. When
the opposite end of the exit point is reached in the direction of x, in this case, it is switched to the next line in the
direction of y and the movement starts again from left to right on the new line. The Eqs. (24) and (25) are still being
used to determine the parameters �l, and the outgoing angular �uxes  ̃m,g and  ̂m,g at the Γi, j cells interfaces.

Finishing the calculations for all nodes in the grid, it is checked whether the stopping criterion is satis�ed. This
criterion establishes that the relative deviation between two consecutive estimates for the scalar �ux at the energy
groups on the node-edge does not exceed a pre-established " positive value. If the stopping criterion is satis�ed, the
algorithm is terminated.

The updating of the transversal leakage terms and the particular solutions in each Γij nodes is always carried out
using the physical-material parameters of these nodes together with the boundary conditions and/or the estimates
of the incoming angular �uxes at each one of these nodes. These estimates for the angular �uxes incoming on the
nodes Γij are constantly updated as the iterative process progresses.

4 Numerical Results
In this section we examine two X,Y geometry model problems. The �rst is a heterogeneous domain developed by
Barros and Larsen [13]. The results of the SGF–CN method are compared with the results obtained through the
spectral nodal methodology SDM–CN.

This problem considers a 100 cm × 100 cm spatial domain with an isotropic unitary neutrons source, Q1 =
1 (cm−3s−1), at the center surrounded by a shielding material, Q2 = 0 (cm−3s−1), considering linearly anisotropic
scattering [13]. Fig. 2 (not drawn to scale), presents a quarter of this con�guration with the boundary conditions
used to perform the simulation.

Table 1 lists the values of the material parameters in each material zone. The objective in this experiment is to
determine the neutron leakage through the upper( Ĵ+(x) ) and right( J̃+(y) ) boundaries of the domain represented
in Fig. 2. These leakage values are calculated using the Eqs. 26 and 27
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Figure 2: First Model problem con�guration.

Table 1: Material parameters

Material Zone �T(cm−1) �(0)S (cm−1) �(1)S (cm−1)
1 0.80 0.40 0.20
2 1.00 0.95 0.50

J̃+(51) =
1
4

J∑

j=1

2∑

g=1

∑

�n>0
�n ̃n,g,j(51)ℎyj!n , (26)

Ĵ+(51) =
1
4

I∑

i=1

2∑

g=1

∑

�n>0
�n ̂n,g,i(51)ℎxi!n , (27)

The stopping criterion requires that the relative deviation between two consecutive estimates for the scalar �ux
on the faces of the domain nodes to be less than or equal to 10−7.

The Table 2 is shown the numerical results of the right and upper boundary leakage calculations besides the
relative deviations �U(%) and (�R(%)) for the SGF −CN and SDM −CN, using as reference the value obtained with
theDDmethod using a 20 × 880 × 100 nodes per region in the x and y direction, when it reaches the �nemesh size,
which is the size that for the scalar �uxes in the sixth decimal place do not have a signi�cant variation. To calculate
the relative deviations �(%), in both cases, we use the expression

�(%) =
|||||||||

SDD − Sm
SDD

|||||||||
× 100, (28)

where SDD is the neutron leakage value obtained with the DD method used as a reference and Sm represents the
neutron leakage value generated by each of the methods used to calculate such leakage in the speci�ed boundaries.

As can be seen, in Table 2 the results obtained for the leaks in both boundaries are symmetrical and as the spatial
grid becomes thinner, the results generated by both coarse mesh methods converge to the same result. The values
for the relative percentage deviations of the methods SGF − CN and SDM − CN when comparing them with the
DD method, present values less than 3 %.

The second model problem is a �xed source experiment in absorbing medium, which was suggested by the Ar-
gonne Code Center Benchmark Problems Committee and models a realistic shielding situation [8]. This problem
has been designed to provide stringent tests for two-dimensional geometry transport codes with two energy groups
[23].
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Table 2: Neutrons leakage for Model Problem 1

Ωx × Ωy Method Upper boundary
�U (%)b

Right boundary �R (%)spatial grid leakage ( Ĵ+(51) ) leakage ( J̃+(51) )
20×880×100 DD 4.99400E-06c – 4.99400E-06 –

1×17×2 SGF-CN 4.88894E-06 2.1039 4.88894E-06 2.1039
SDM-CN 5.13538E-06 2.8310 5.13538E-06 2.8310

1×26×3 SGF-CN 4.94060E-06 1.0693 4.94060E-06 1.0693
SDM-CN 5.05927E-06 1.3070 5.05927E-06 1.3070

1×44×5 SGF-CN 4.97479E-06 0.3847 4.97479E-06 0.3847
SDM-CN 4.97479E-06 0.3847 4.97479E-06 0.3847

2×88×10 SGF-CN 4.98905E-06 0.0991 4.98905E-06 0.0991
SDM-CN 4.98905E-06 0.0991 4.98905E-06 0.0991

a Neutrons leakage : cm−2 s−1 .
b Relative deviations.
c Read: 4.99400 × 10−6 .

The problem geometry is illustrated in Fig. 3. The macroscopic cross sections for the homogeneous material of
the system and the source density are listed in Table 3.

Figure 3: Second model problem con�guration.

To simulate this problem using the SDM-CNmethod, a spatial discretization grid it is de�ned as follows, in the
direction of x, where it is the region with the uniform spatial source (0 ≤ x ≤ 65) was divided into 13 nodes and the
regionwithout source (65 ≤ x ≤ 133) into 14 nodes. Similarly, in the direction of the spatial variable y, it was divided
into 12 nodes in the region with source (0 ≤ x ≤ 60) and 16 nodes in the region without source (60 ≤ x ≤ 140).

To compare the results obtained by the SDM-CN method, we use the reported results for this problem by Dias
in [23], using theDOT-II andTWOTRAN codes together to the results of theSGF-CNmethod reported byMenezes [23].
The Table 4 shows the numerical results obtained for the total leakage for both energy groups, J

Tg
+ , at the right bound-

ary of the system shown in Fig. 3. The results listed in [23] for code TWOTRAN considering a spatial discretization
grid of 6804 nodes, (39 × 42) × (36 × 48), were used as reference for calculating the relative relative deviation of all
methods addressed in this experiment using a spatial discretization grid of 756 nodes, (13 × 14) × (12 × 16). Were
considered S8 and S12 sets of the Level Symmetric Quadrature, LQN .

As can be seen in Table 4, the relative percentage deviations of the results generated by the SDM-CNmethod for
the right boundary leakagewere always smaller than the relative deviations generated by theDOT–II andTWOTRAN
similar to the behavior of the SGF–CNmethod. Itmay also be noted that the relative percent deviations of themethod
results in the SDM-CN method decreased with increasing quadrature of the symmetry level.
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Table 3: Macroscopic Cross Sections (cm−1) and source density (neutrons∕cm3) for the second model problem

g = 1 g = 2
�Tg 0.092104 0.100877
Qg 0.006546 0.017701

�(0)sg′→g
(cm−1)

g′ = 1 0.006947 0.023434
g′ = 2 0.000000 0.004850

Table 4: Neutron leakage a by right boundary

JTg+
SN g Fine mesh TWOTRAN DOT − II SGF − CN SDM − CNreference

8
1 5.7400E-04b 5.0000E-04 4.9900E-04 5.4744E-04 5.4744E-04

(12.8920 %)c (13.0662 %) (4.6272 %) (4.6279 %)

2 9.2100E-04 8.0000E-04 7.7500E-04 8.7832E-04 8.7832E-04
(13.1379 %) (15.8523 %) (4.6341 %) (4.6346 %)

12
1 5.5700E-04 4.9600E-04 4.9900E-04 5.4833E-04 5.5360E-04

(10.9515 %) (10.4129 %) (1.5566 %) (0.6110 %)

2 8.9100E-04 7.7600E-04 7.7500E-04 8.7868E-04 8.9028E-04
(12.9068 %) (13.0191 %) (1.3827 %) (0.0806 %)

a Neutrons leakage : cm−2 s−1,
b Read: 5.7400 x 10−4,
c Percent relative deviation .

5 Discussion
In this paper, a two-dimensional coarse-mesh numericalmethod, formultigroup �xed source linearly anisotropic SN
problem inX,Y geometry, SDM−CN, has been described and developed. Themultigroup SDM−CN discretization
scheme preserves the general solution of the multigroup SN equation in each spatial node, converges to numerical
results that are continuous across each node interface and satis�es the external boundary conditions whether the
mesh size order or quadrature set used. The SDM −CN method converges to approximate numerical solutions that
coincide with the numerical results obtained from the solution of the analyzed SN problem regardless the de�nition
of the spatial grid or the angular quadrature used, same as the SGF − CN method while the �ne-mesh DDmethod,
DOT–II and TWOTRAN solution are not. When calculating the transverse leakage terms, in the method SDM–CN,
these are approximated by constants. These relative deviations can be attenuated if a better approximation is made
for the transverse leakage terms.

Our expectation for the future of this methodology is that, due to its simplicity of implementation, the SDM −
−CN method will give us CPU times, for the modelings executed, lower than the DD method and other methods
used for the neutron transport calculations.

For future works, we plan to implement di�erent andmore complexmodel problems, reporting on the numerical
method results after they have been executed and thoroughly tested.
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