
Obtaining L-systems Rules from Strings

Edmar Santos1, Regina C. Coelho2

ABSTRACT
This paper presents a proposal to solve the Inverse Problem of Lindenmayer in the deterministic and
free-context L-system grammar class. The proposal of this paper is to show a methodology that can
obtain an L-system rule from a string representing the development stage of any object. The strings
used in the tests were obtained from known grammars. However, they are dealt with as of having an
unknown origin to assure the impartiality of the methodology. The idea presented here consists in the
regression of growth of the string analyzed by an algorithm built based on relations of growth obtained
from string generated by known deterministic grammars. In the tests carried out, all the strings
submitted to the proposed algorithm could be reverted to an L-system rule identical to the original rule
used in the synthesis of the string. It is also interesting to observe that the obtaining of these rules
occurred practically in real time with tested grammars.

Key Words: L-systems. Inverse Problem. Inverse Problem of Lindenmayer.

1. INTRODUCTION

 Grammatical systems of parallel rewrite, known as Lindenmayer Systems or L-

systems [1], have become the target of scientific focus of many researchers. In the

original conception of the L-systems only biological proposals were presented,

destined for the representation of development processes of living creatures with

very simple graphic representations [2]. However, considering the potentialities

visualized in those systems, other more improved approaches have been presented,

including non-biological proposals and more sophisticated mechanisms for graphic

representations of those processes. L-systems have been used, for instance, for the

generation of fractals [3], [6]; such as Peano curves [4]; for the realistic image

synthesis of trees and some plants [5], [6]; for the analysis of cellular layers

development process [7]; for the generation of digital straight lines [8]; for the

recognition of shapes in Computer Vision [9], [10]; for the generation of musical notes

1
 UNASP – Adventist Universitary Center of São Paulo. Postal Code 05.859-001 – São Paulo – SP - Brazil

edmar.santos@unasp.edu.br

2
 UNIFESP – Federal University of São Paulo. Talim Street, 330 – Postal Code 12.231-280 – São José dos Campos – SP –

Brazil - rccoelho@unifesp.br

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 58

[11]; for searching of neural network structures [12]; for the virtual creatures

synthesis for simulation environments [13]; for artificial neural synthesis [14]-[17], and

many other approaches.

 Nevertheless, the great problem of the studies that use the L-systems is

determining what appropriate system can conveniently represents the development

process of the desired object. This problem can be understood as a case of Inverse

Problem, a widely studied theory in areas such as geophysics [18], [19], physics [20],

research with medical images [21], [22], and others. This theory, in general, deals

with a problem where one intends to infer the representation of a model based on the

observation and analysis of data belonging to the same system in that model [23]-

[26]. In the L-system theory this problem is known as the Inverse Problem of

Lindenmayer.

 This work intends to collaborate with the solution the Inverse Problem of

Lindenmayer. For that, a methodology is proposed to explore the self-similarity

characteristics and parallel rewrite of those systems. The idea consists in reverting

one string, derived of a determined state of development of one self-similar structure,

in one L-system rule. This rule must allow the reproduction of that object. It is

assumed that those strings have already been obtained by some process, that is, this

work does not intend to discuss the methods of obtaining those strings.

 Thus, this work is structured in the following way: in section 2 the correlated

studies are presented, indicating the state-of-the-art the Inverse Problem of

Lindenmayer. Next, in section 3, the formalism of L-systems, including some

concepts of formal languages is presented. Section 4 brings the proposed

methodology in this paper. In section 5, the results obtained and the discussions

about these results are presented, followed by the conclusions in section 6.

2. CORRELATED STUDIES

 In the field of Formal Languages Theory, the question of the Inverse Problem

is known as Grammatical Inference, many times referred only as Grammatical

Induction. The processes of grammatical inferences have been studied, for instance,

in areas such as machine learning [27], computational biology [28]-[30], pattern

recognition in structured documents [31], speech recognition [32], etc. Great efforts

have been made in the attempt to achieve methods capable of assisting us in the

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 59

search of formalisms for the studies of these processes in these diverse areas. It is

cited, for instance, the work of SCHWEHM e OST [33] that have proposed a method

for obtaining of stochastic regular grammars using a genetic algorithm in a high-

power multiprocessed system. Their work presents interesting results, since the

obtained grammar in their test differs in just centesimal values in the probabilistic

weights of the original rules, used as a model.

 The Inverse Problem appears as a particularity of Grammatical Inference, now

acting in the context of Lindenmayer Systems formalism [34]. This it means that, in

the search processes for L-system grammars, the inherent properties in these

systems must be taken into account.

 We can cite the work of KOZA [35] as one of the first works related to Inverse

Problem which presents a methodology to discover rules for the Lindenmayer system

based on a genetic algorithm. Koza was able to obtain a similar rule proposing some

manual adjustments to make it identical to the original rule. In his tests, Koza used an

L-system grammar to construct the fractal of the Quadratic Koch Island used in the

tests.

 RUDOLPH and ALBER work‟s [36] deals with a proposal to solve the Inverse

Problem of Lindenmayer in the towers transmission project. The proposal is based

on the execution of evolutionary algorithms that intends to converge the grammar

generation in the genotype of intended object. The grammar rule obtained in each

case was not revealed.

 Another work that can be referred is the COSTA and LANDRY [37]. In this

work, a method to describe tree-shape fractals and to reconstruct these models is

formally proposed. That proposal consists in reconstructing an object by means of a

grammar generated by a genetic algorithm from the sequences of images obtained

around the original object. Their results point to similar shapes to the samples in the

majority of tests. The rules of the grammar found, used in the reconstruction of the

object, were not presented. In spite of the contribution of those studies, it is evident

that the question about the Inverse Problem of Lindenmayer still challenges the

researchers.

3. LINDENMAYER SYSTEMS

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 60

 Formally introduced by the biologist Aristid Lindenmayer in 1968 [1], based on

the Chomsky grammars [2], the Lindenmayer System, or just L-systems, was initially

proposed for the representation of development processes of living creatures. It

deals with a grammatical system of rewrite where the productions are substituted in

parallel in each development phase. This confers to these grammar classes the

recursive potentiality to easily represent complex objects.

 The formal definition of an L-system grammar, very similar to the definition of

the Chomsky grammar, can be make by a sorted quadruple {V, T, P, S} where V

represents the set of variable symbols (V{}).

 Normally, the {S, F} symbols are used in V. T represents the set of terminal

symbols; usually the symbols {+,-, [,]} are used, where T can be an empty set. P

represents the set of production rules, where PVV*. S represents the axiom, were

S V+. The big difference between Chomsky grammars and the L-systems is in the

application order of the production rules. Whilst in the conventional grammars the

production rules are applied in a sequential way, in the L-systems the application of

the rules occurs in a simultaneous and parallel way along whole the string that will be

rewritten.

 The L-systems are used almost always associated with the graphic

interpretation of their productions. The mechanism of graphic interpretation,

proposed by Prusinkiewicz [2], is based on the turtle geometry of the Logo language

[38] and became the classic mechanism for graphic interpretations at the L-systems.

An example of L-system grammar and its graphic interpretation of production in the

forth level, indicated by n, is presented in Fig. 1. The angle used in this example is

indicated by α.

Fig. 1 One example of the L-system grammar

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 61

4. OBTAINMENT OF L-SYSTEMS RULES

 Firstly, the proposal presented in this paper determines the limits of

exploration in the space of the classes in L-systems grammars. Next, the

methodology on these limits is explained. These considerations are presented in the

next sections.

A. Delimitation of the Problem

 The Inverse Problem of Lindenmayer is seen as a problem of high complexity

and it is not a simple task to solve it. This paper explore the class of Deterministic

and Free-Context L-system grammars, and grammars that present the restriction of

having the axiom formed by one symbol, and the grammar being constituted by one

production rule. The grammar presented in Fig. 1 is an example in this category. It is

also important to consider that strings used in this paper were obtained from known

grammars, with the previous restrictions. However they were dealt as being of

unknown origin, in order to allow the validation of the proposal. The intention is to

present a methodology that allows finding an L-system rule using, for this, just one of

these strings, regardless the production level at which such string has been

originated. The rule found will have to be able to reproduce the string again.

 The process of parallel and simultaneous rewrite that the string has gone

through the productions is the only known factor. All the other information for solution

of the problem is obtained from the analyzed string.

B. Proposed Methodology

 Conceptually, the idea presented here is very intuitive. Observe in Fig. 2 the

production scheme of an L-system grammar. This is the same grammar that was

presented before in section 3. In this figure is possible to notice that, from the first

production level, all of the others levels are composed exactly by the same parts.

These parts are the results of the format of the grammar production rule, determined

by the presence of terminal symbols acting as separators of the evolution points. The

balloons indicate these exact points along the production string. It is noticeable that,

after the exhaustive rewrite of the productions, these points will always be separated

by the same terminal symbols. Then, one understands that the process of rewrite of

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 62

the L-systems confers to the production of these grammars a characteristic behavior.

 Therefore, the idea of this paper is to revert at once the growth of the string

promoted by the rewrite process, in all these evolution point indicated by balloons, as

it is shown by the scheme of Fig. 3.

Fig. 2 L-system production scheme

Fig. 3 Scheme of string reversion

 To assure that the reversion process results in a rule potentially capable of

reproducing the analyzed string, it is necessary to consider some important factors:

i. The quantity of `F' s in an L-system rule that could result in the analyzed

string will have to be found;

ii. It will be necessary to verify if the reversion promoted in the analyzed string

produces the same amount of `F' s found in (i);

iii. It will be necessary to verify if the string obtained in the reversion is capable

of producing the same amount of terminal symbols presented in the analyzed

string.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 63

 Thus, this proposal of reversion can be organized and expressed in the way of

the presented algorithm in Fig. 4. Obviously, the formalization of these concepts

requires the consideration of other factors. In the process of searching for the

generating rule, the great problem is identifying the points of evolution in the string so

that one can effect the regression process.

Fig. 4 Algorithm 1

 It is possible to establish the relation between the quantity of „F‟s present in

the string and its growth order during the productions through the analysis of known

grammar string. This relation can be expressed by “(1)”. In the equation, Ft

represents the quantity of „F‟ characters counted in the string, Fq represents the

quantity of „F‟s present in the production rules, and n represents the level of the

production of string.

n

qt FF

(1)

 According to this paper proposal, one can notice that only Ft can be known

counting `F' characters present in the string that will be analyzed. This count is

indicated by CountSimbol() in line 1 of the algorithm. If the return is 0 or 1, the

string cannot represent a state of development of an object and the algorithm stops

running and the result is w. The conditional deviation in line 3 is responsible for this

verification. The return of w also occurs in case the algorithm does not find any rule.

 Thus, we proposed an iterative search in Fq to find values for the n exponent

that can result in the already known value Ft, that is, one can find what quantity of

„F‟s in an L-system rule would be responsible for the production of the quantity of „F‟s

present in the analyzed string, and at which this would be possible in the n level.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 64

Knowing the possible values of Fq and n is also fundamental to identify the evolution

points in the analyzed string. The iteration in Fq ends in the highest possible value of

an exponentiation capable of producing Ft, which is equivalent to the integer part of

its own square root, according to line 4.

 Therefore, considering the relation of Equation 1, the inverse relation can be

established by means of a logarithmic function, shown in Equation 2, to determine

the values for n that satisfy the equality. This is the relation expressed in line 5 of the

algorithm.

 n
F

F
F

q

t
tFq

ln

ln
log

(2)

 Once the iteration in Fq obtains an integer value for n, since Ft cannot be the

resultant of a fractionary exponent, it is possible to know the probable format of the

production rule of the analyzed string, that is, it is already possible to know how many

`F' s will be present in the probable production rule and at which level the analyzed

string may have been produced. This assures the first consideration presented in (i).

The presence of the conditional deviation, in line 6, makes it possible for the

algorithm to skip to the next iteration in case the obtained value of n is not an integer

number.

 In line 8, the Slice() function is required, whose parameters are: the values of

Ft and Fq and the initial string. As the value of Fq indicates how many „F‟s will be

present in the sought rule, and each „F‟ will be responsible for the production of a part

of the string, so there must be equal Fq parts in this string and each one of these

parts must have k „F‟ characters, where k = Ft / Fq. Thus, this function must identify

and return to the sub-string corresponding to one of these parts. This function was

conveniently implemented to return to the first part, locating the contained sub-string

since the first occurrence of „F‟ until k.

 In line 9, the function Replace() is required, whose parameters are: the str

string, the oldpatt sub-string returned by the previous function, and the „F‟ symbol.

This function locates and substitutes all the occurrences of oldpatt in the str string

for „F‟. This function also returns how many substitutions are made. A conditional

deviation verifies if the quantity of substitutions corresponds to the number of parts

that the probable rule should have, that is, if it is equal to Fq. If this condition is not

verified, it means that the analyzed string cannot have been produced by a rule

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 65

formed by the of current Fq and n values and, therefore, the next iteration in Fq is

executed; else, str already represents a rule capable of producing w and it is

returned as a solution to the problem and the algorithm is finished. The conditional

deviation existing in line 9 guarantees the consideration made in (ii).

 However, some production rules can cause the accumulation of terminal

symbols in the string. It is the case, for instance, of a rule such as F-F . In Fig. 5,

the production of this rule is presented in 3 levels, indicating at each level the parts

produced by the `F' s of the previous level. This figure also indicates the sub-string

returned by the function slice() applied to the production of the third level, followed

by the substitution of this sub-string by the function replace(). At the end, the

accumulation of terminal symbols indicated by the balloons can be noticed.

Fig. 5 Accumulation of terminal characters

 The TerminalClear() function in the line 10 is required to eliminate these

terminal symbols accumulated during the production levels. This function receives as

parameters the str string resulting from the line before, and the value of n. This

function removes these symbols in the same proportion they were accumulated

during the rewrite process. That is made by identifying how many characters were

accumulated by the production level before the first occurrence of „F‟. In such a way,

the quantity of terminal symbols existing before the first occurrence of „F‟ is divided

by n. The quotient obtained indicates how many terminal symbols must be removed

before „F‟ from each production level. One can notice that the first level must be

excluded from the calculation, since it represents the production rule per se, then, the

quotient obtained is multiplied by n-1. The product represents the total amount of

terminal symbols that must be removed before all the occurrences of „F‟ in str. The

function must execute the same operation for the existing symbols after each

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 66

occurrence of „F‟ in its due proportion. In case it is verified that the string does not

present accumulation of terminal symbols, no alteration is made in str.

 Finally, in line 11 of algorithm in Fig. 4, the function isPossible() receives the

rule string resulting from the previous function, the values of Fq and n, besides St,

that indicates how many terminal symbols there are in w. This function is required to

verify if the string obtained by the reversion process is capable of producing the

same quantity of terminal symbols existing in w, without the need to effect the

productions until the level indicated by n. As in the rewrite process the terminal

symbols are accumulated level by level, from the rule itself, it would be enough to

know how many terminal symbols would be present in each level, and add them up.

 It must also be noticed that for each existing `F' in string to be derived, the

same quantity of terminal symbols present in the production rule will be inserted, plus

the symbols already existing resulting from the last derivation. In such a way, the

quantity of terminal symbols existing in one particular production level could be

determined by Equation 3, in which Fq and T represent, respectively, the quantity of

`F' s and the quantity of terminal symbols present in the rule.

 TFS
n

i

i

qr

1

0

 (3)

 The returned value in Sr by Equation 3, representing the quantity of terminal

symbols that would be present in the production rule until the level n, must be

compared with St. In case these values are equal, the result of the function will be

true and the algorithm will return rule as a solution to the problem; otherwise, the

algorithm will execute the next iteration, if there is any, or it will be finished returning

w. Thus, this function assures the final consideration made in (iii).

 It is also important to observe that, for convenience‟s sake, the implemented

algorithm returns the first rule found capable of reproducing the string supplied for

analysis, being ended in the sequence. However, if the algorithm were not

interrupted, in some cases, it would be possible to find other rules potentially capable

of reproducing the same entered string. This is the case, for instance, of the string

“FFFFFFFFFFFFFFFF” that may have been produced by the application of one rule

formed only by “FF”, in four levels of rewrite, or it may have been generated by the

application of the rule “FFFF”, after the second level of production. The complexity of

formation of the rules would just imply a slower or faster development process.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 67

5. DISCUSSION AND RESULTS

 Based on the above considerations, we performed the analysis of several

strings produced by grammars known in different productions levels. The proposed

methodology was applied on two groups of strings:

 Group (a) - Strings produced by 20 grammars, and some of them are variations

of grammars widely known, the most obtained from [34]: in this group, for each

grammar, strings were generated from the level one until the level six of

production. One hundred twenty different strings were tested.

 Group (b) - Strings produced by randomly generated grammars: a grammar

generator of random sizes and variable complexity was developed. One million

different grammars were generated. Each of these grammars was used to

produce a string at the level four of iteration. Next, all the strings were submitted

to the process reversal.

 The grammar of the random generator was built based on a non-deterministic

grammar. In this grammar, primitive strings can lead to a Context-free, Deterministic

L-system rule. The strings used as primitive rules were: [F], + F, F +, F-, F- and FF.

From an F axiom, the rewriting process is performed a random number of times (no

more than 10 to avoid generating a very large rule). This process also ensures that

no rule containing only one 'F' is returned. The code of this grammar generator is

reproduced in the algorithm in Fig. 6. This code is executed in accordance with the

number of grammars to be generated. In this algorithm, has a function called

randomN() on line 3, with the parameter 10, which returns an randomly generated

integer between 1 and 10. This number indicates how many times the process of

rewriting in the formation of a new rule will be performed. In line 7, a similar function

is called randomly to obtain a primitive string contained in G, which is the randomG()

function. The G set contains primitive strings which will be used in the rewriting

process to form new rules.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 68

Fig. 6 Algorithm 2

 Rules obtained in the implementation of the algorithm in Fig. 6, were stored on

a list to be excluded from all duplicated rules, leaving only different rules.

The observations of the implementation of the proposed methodology for the strings

of the (a) and (b) groups are:

 The proposed algorithm in Fig. 4 was able to obtain the L-system rule in all the

strings submitted to the test, both for strings of the (a) group and for the (b)

group, returning the identical rule to the on used in the synthesis of the tested

string;

 The search time of the L-system rules of these strings presented variations

according to the length of the submitted strings. However, the execution of the

algorithm showed that the solution is found inside of an extremely fast time

interval. For instance, in the analysis of one of the largest tested string, having

7.872.138 characters (about 1836 pages in a common text editor), the rule was

obtained, on average, in 688 milliseconds;

 Other relevant information, which can be obtained by the algorithm in Fig. 4, is

the level of production where the rule found can reproduce the analysed string.

This production level is given by the value n at the moment in which that a rule is

found.

 All the results presented were obtained in a system with a 1.800Mhz, 512MB

RAM memory CPU configuration, running Windows XP SP2. The algorithms were

developed using IDE / RAD Delphi7 Object Pascal language through.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 69

6. CONCLUSION

 This paper presented a proposal to solve the Inverse Problem of Lindenmayer

in a subclass of L-system grammars. The tests carried out until now have produced

results 100% exact. It was possible to obtain a rule that allowed the reproduction of

the analyzed string in all the tests. We can notice that it is possible to obtain identical

rules to the original rules used in the synthesis of the samples. Moreover, the

execution of the algorithm to obtain these rules has evidenced an extremely fast

execution time.

 Future studies will involve the study of methods to automatic obtain strings,

from known objects, or still, to obtain to methods that support other groups of L-

system grammars, besides the class supported by this proposal, as for instance,

grammar with more than one production rule.

References

[1] Lindenmayer, A. Mathematical models for cellular interaction in development. Journal of

Theoretical Biology. 1968; 18 : 300-315.

[2] PRUSINKIEWICZ, P. Graphical applications of L-systems. In: Proceedings of Graphics
Interface '86 - Vision Interface '86. 1986; 247-253.

[3] SZILARD, A. L.; QUINTON, R. E. An interpretation for DOL Systems by computer
graphics, The Science Terrapin. 1979; 4 : 8-13.

[4] SIROMONEY, R.; SUBRAMANIAN, K. G. Space-filling curves and infinite graphs. In: H.
EHRIG, H.; NAGL, M.; ROZENBERG, G. Graph grammars and their application to
computer science, Second International Workshop, Lecture Notes in Computer Science,
Springer-Verlag, Berlin. 1983; 153 : 380-391.

[5] AONO, M.; KUNII, T. L. Botanical tree image generation. IEEE Computer Graphics and
Applications, Tokyo. 1984; 4(5) : 10-34.

[6] SMITH, A. R. Plants, fractals, and formal languages. Computer Graphics. 1984; 18(3) :
1-10.

[7] BOER, M. J. M.; FRACCHIA, F. D.; PRUSINKIEWICZ, P. Analysis and simulation of the
development of cellular layers. In: LANGTON, C. G. et al. Artificial Life II, SDI Studies in
the Sciences of Complexity, Addison-Wesley. 1991; X : 465-483.

[8] BRONS, R. Theoretical and linguistic method for describing straight lines. In: EARN-
SHAW, R. A. Algorithms for Computer Graphics, Spinger-Verlag, Berlin Heidelberg.
1995; 19-57.

[9] HOLLIDAY, D. J.; SAMAL, A. Object recognition using L-system fractals. Pattern
Recognition Letters. 1995; 16 : 33-42.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 70

[10] SAMAL, A.; PETERSON, B.; HOLLIDAY, D. J. Recognition of plants using a stochastic
L-system model. In: Journal of Electronic Imaging, SPIE. 2002; 11(1) : 50-58.

[11] PRUSINKIEWICZ, P. Score generation with L-systems. Proceedings of the 1986
International Computer Music Conference. 1986; 455-457.

[12] AHO, I.; KEMPPAINEN, H.; KOSKIMIES, K.; MÄKINEN, E.; NIEMI, T. Searching neural
network structures with L Systems and genetic algorithms. Tampere: Department of
Computer Science - University of Tampere. 1997.

[13] HORNBY, G. S.; POLLACK, J. B. Evolving L-systems to generate virtual creatures.
Computers and Graphics. 2001; 6(25) : 1041-1048.

[14] HAMILTON, P. A language to describe the growth of neuritis. Biological Cybernetic.
1993; 68 : 559-565.

[15] MCCORMICK, B. H.; MULCHANDANI, K. L-system modeling of neurons. Visualization
in Biomedical Computing Conference Proceedings. 1994.

[16] KALAY, A.; PARNAS, H.; SHAMIR, E. Neuronal growth via hybrid system of self-
growing and diffusion based grammar rules. I Bulletin of Mathematical Biology. 1995;
57(2) : 205-227.

[17] COELHO, R. C.; JAQUES, O. Generating three-dimensional neural cells based on
bayes rules and interpolation with thin plate splines. Lecture Notes in Computer Science
- Progress in Pattern Recognition, Speech and Image Analysis. 2003; 2905 : 675-682.

[18] MENKE, W. Geophysical data analysis: discrete inverse theory. Academic Press. 1989.

[19] PARKER, R. L. Geophysical inverse theory. Princeton University Press. 1994.

[20] BERTERO, M.; BOCCACCI, P. Introduction to inverse problem in imaging. Institute of
Physics Publishing. 1998.

[21] NATTERER, F.; WÛBBELING, F. Mathematical methods in image reconstruction.
Society for Industrial and Applied Mathematics. 2001.

[22] UHLMANN, G. Inside out: inverse problems and applications. Mathematical Sciences
Research Institute Publications. 2003.

[23] CHALMOND, B. Modeling and inverse problems in image analysis. Springer. 2003.

[24] RAMM, A. G. Inverse Problems: mathematical and analytical techniques with
applications to engineering. Springer. 2005.

[25] TARANTOLA, A. Inverse problem theory and methods for model parameter. Society for
Industrial and Applied Mathematics. 2005.

[26] TARANTOLA, A. Popper, Bayes and the inverse problem. Nature Physics. 2006; 2(8) :
492-494.

[27] HIGUERA, C. de La. Current trends in grammatical inference. In: F.J.F. et al. Advances
in Pattern Recognition, Joint IAPR International Workshops SS-PR+SPR2000, Lecture
Notes in Computer Science, Springer-Verlag. 2000; 1876 : 28-31.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 71

[28] SEARLS, D. The computational linguistics of biological sequences. In: HUNTER, L.
Artificial Intelligence and Molecular Biology, AAAI Press. 1993; 47-120.

[29] GRATE, L.; HERBSTER, M.; HUGHEY, R.; HAUSSLER, D.; MIAN, I. S.; NOLLER, H.
RNA modeling using gibbs sampling and stochastic context free grammars. In: Proc. of
Second Int. Conf. on Intelligent Systems for Molecular Biology, Menlo Park, CA:
AAAI/MIT Press. 1994.

[30] SAKAKIBARA, Y.; BROWN, M.; HUGHEY, R.; MIAN, I. S.; SJOLANDER, K.;
UNDERWOOD, R.; HAUSSLER, D. Stochastic context-free grammars for tRNA
modeling. Nuclear Acids Research. 1994; 22 : 5112–5120.

[31] SAIDI, A. S.; TAYEB-BEY, S. Grammatical inference in document recognition: In:
Grammatical Inference, Lecture Notes in Computer Science, London, Springer-Verlag.
1998; 1433 : 175-186.

[32] KASHYAP, R.L. Syntactic decision rules for recognition of spoken words and phrases
using stochastic automaton. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 1979; 1(2) : 154-163.

[33] SCHWEHM, M.; OST, A. Inference of stochastic regular grammars by massively parallel
genetic algorithms. In: ESHELMAN, L. J. Genetic Algorithms: Proceedings of the sixth
Int. Conf. (ICGA95), Morgan Kaufmann Publishers. 1995; 520-527.

[34] PRUSINKIEWICZ, P.; LINDENMAYER, A. The algorithmic beauty of plants. Springer-
Verlag, New York. 1990.

[35] KOZA, J. R. Discovery of rewrite rules in Lindenmayer systems and state transition rules
in cellular automata via genetic programming. Symposium on Pattern Formation (SPF-
93), Claremont, California. 1993; 1-19.

[36] RUDOLPH, S.; ALBER, R. An evolutionary approach to the inverse problem in rule
based design representations. Proceedings 7th International Conference on Artificial
Intelligence in Design, Cambridge University, Cambridge, UK, July 15-17th. 2002.

[37] COSTA, E. L.; LANDRY, J. A. Generating grammatical plant models with genetic
algorithms. Proceeding of the International Conference on Adaptive and Natural
Computing Algorithms. Coimbra, Portugal: March 21-23. Springer Wien, New York. 2005;
230-234.

[38] ABELSON, H.; diSESSA A. A. Turtle geometry. M.I.T. Press, Cambridge. 1982.

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 72

