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ABSTRACT 
In this work a methodology of fault analysis in mechanical systems was developed using 
Kalman Filter state observes, in which, the input to the observers are identified by Fourier, 
Legendre and Chebyshev orthogonal functions. The proportional-integral observer is 
presented to the unknown input identification, this observer can be able to find the 
unknown inputs of the system and these inputs are used to the fault detection by way 
Kalman Filter Observer. Here can be seen the methodology of parameters and force 
identification using only the response of the system thought orthogonal functions. The 
methodology developed is applied in a composed structure of shake tables from 
Mechanical Vibrations Laboratory. 
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1.  INTRODUCTION 

 

With the increase in production process, are more and more demands of the industries for 

machines and equipment capable of executing a greater number of functions in less time and 

in many cases to be capable to act continuously. This leads to the fact of that these systems 

are submitted the high dynamic forces. Normally these mechanisms are expensive and 

therefore one of the major concerns of industry is to keep its equipment functioning without 

necessary breakdowns. With this constant concern, in the last times, we verify much 

development of new techniques of detection and localization of faults in mechanical systems 

submitted dynamics loads. In order to guarantee continuo operation of the mechanical 

systems, they must be supervised and monitored so that the faults are diagnosed and 

repaired as fast as possible, if not so the disturbance in normal operation can to take the 

one's a deterioration of the performance of the system or the dangerous situations. Robust 

observers can reconstruct the states not measured or estimate the motion of the system that 

can’t be measured directly. Thus, faults can to be detected without knowledge of the motion 

at many points in the system by being able to monitor them through the reconstruction of the 

states. The existing methodologies using state observers are usually used in control 
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problems and detection of possible faults in sensors and in instruments. In this work the state 

observers are used to faults detection in mechanical systems, using orthogonal functions or 

Proportional and Integral (PI) observer to estimate the unknown inputs. The Kalman filter 

observer is used to localization and quantification of the faults. In previous works the 

identification of the faults using only state observers was possible with the previous 

knowledge of the inputs [1,2]; in this work the unknown input will be found using the 

orthogonal functions or PI observers. 

Methods of identification of forces or parameters, with the objective of diagnosis of faults 

in mechanical systems, using orthogonals functions, have been developed since the end of 

80's. These methods have used the series of Fourier for the identification of the structural 

parameters, and developed the inverse methodology for the identification of the forces [3]. 

Pacheco [4] used some orthogonals functions for parameters identification through of the 

comparisons between the functions. Pacheco and Steffen [5] published a work where the 

orthogonals functions were used for identification of parameters in non linear systems. In the 

work Melo & Morais [6] studied the behavior of the error found in the identification of the 

parameters varying the number of terms of expansion of the orthogonal functions for some 

functions [7]. In other work Melo and Morais [1] of different way, had as objective to identify 

the forces and the parameters of the mechanical systems together, in the described works 

previous, the identification of the parameters alone was possible with the previous 

knowledge of the inputs. 

It is physical and economically unviable, in some control systems, for transducers to be 

placed to measure all the variables of state. When analyzing the methodology of state 

observers, his found that some possess the capacity to reconstruct the inaccessible states, 

however, the necessary condition for this reconstruction is that the states are observed [8,9]. 

In the observers described by Luenberger [8] the gain is determined through algorithms of 

allocation of eigenvalues and eigenvectors of the observer matrix with a certain criterion. A 

careful analysis must be made so that the speed of estimation, determined for the 

eigenvalues, is not very great so that sensitivity to the noise in the sensor also is not great. 

This type of observer corresponds to a deterministic observer. The problem of the noise in 

the sensor of course leads a stochastic observer who not only handles better the noise in the 

sensor [10], but also is characterized by having a gain that is optimized as a certain criterion 

as it will be seen ahead. The optimized observer, or stochastic observer is known as 

Kalman-Bucy (KF) filter [11]. The filter of Kalman has demonstrated to be useful in many 

applications [2], however, the interest here is its application with ends to faults detection. 
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2. ORTHOGONALS FUNCTIONS  

 

A set of real functions 3... 2, ,1 ),( ktk  is said to be orthogonal in the interval  ba,    , 

if (Equation 1): 
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So on, the set of functions is said orthonormal the following relation is valid (Equation 2): 
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If mn  is the Kronecker delta, the set of functions )(tk  is said to be orthonormal and 

mn =0 if nm   or mn =1 if nm  . If a function )(f t is continuous or partially continuous in 

the interval  ba, , then )(f t  can be expanded in series of orthonormal functions, as follows 

(Equation 3): 
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Such series, called orthonormal, constitute generalizations of the Fourier series. Admitting 

that the sum in Equation 3 converges to )(f t , we can multiply both members for )(tm  and 

integrate them in the interval  ba, , with mc  as the generalized coefficients of Fourier. 

The following property, related to the successive integration of the vectorial basis 

(Equation 4): 
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Where [P]  r,r is a square matrix with constant elements, called operational matrix [3], 

and T

rm tttt )}(  ...  )(  )({)}({ 10   is the vectorial basis of the orthonormal series. In fact, if a 

complete vectorial base is regarded, or on other world, if the series are not truncated, the 

relation obtained in Equation  4 is an equality. However, in practice, it becomes not suitable, 

due to the high order of the matrix [P] obtained. A following sections, the vectorial basis and 
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the operational matrix related to each type of orthogonal function considered in this paper are 

briefly reviewed [4]. 

 

Quadro 1: Fourier series 
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T = Period of sampling and s = number of terms of Fourier in sines and cosines 

 

Quadro 2: Legendre polynomials 
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r = number of terms truncated 

 

Quadro 3: Chebyshev polynomials 

Recursive formula on the interval 

] t,0[ ft  

Operational matrix of integration 

1
2

)(

1)(

1,2, ,1                                         

)()(1
2

2)(

1

0

11





















 

f

ii
f

i

t

t
tT

tT

ri

tTtT
t

t
tT

  
 

2

ft
P 





















































0
)2(2

1
0000

)2(

)1(

)1(2

1
0

)3(2

1
000

)3)(1(

)1(

0006102131

000041041

0000011

1

rrr

rrrr
r

r













 

r = number of terms truncated 

 

 

Vetor, Rio Grande, v.22, n.1, 38-56, 2012. 41



2.1. Identification of mechanical systems through orthogonal functions  

 

The proposed identification method can exploit either on the free or forced time domain 

responses, as functions of displacements, velocities or accelerations. Once the formulations 

for these three kinds of responses are quite similar [6]. Only the formulation for forced 

systems in terms of displacements, will be presented. 

The development of the method starts on the equation of motion of a forced mechanical 

system of N degrees of freedom (Equation 5): 

 

         t)()()(
...

ftxKtxCtxM 

















      (5) 

 

Where [M], [C] and [K] are the inertia, damping and stiffness N-order matrices 

respectively;  )(tx  is the vector of displacement time responses and  )(tf is the vector of 

exciting forces. 

Integrating Equation 5 twice in the interval [0,t], it can obtain the Equation 6: 
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The signals )(tx  and  )(tf can be expanded in the truncated series of r orthogonal 

functions as follows (Equation 7): 

 

)}(]{[)}({ tXtx   and )}(]{[)}({ tFtf         (7) 

 

where:  
rNX  ,][   is the matrix of the coefficients of expansion )}({ tx  

  
rNF  ,][   Is the matrix of the coefficients of expansion )}({ tf  

Substituting Equation 7 in Equation 6 and applying the integral property given by Equation 

4, the following system of algebraic equations can be obtained the Equation 8 [1]. 
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Change the Equation 8, it  can be written according to Equation 9: 
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And so, the Equation 8 and the Equation 9 can be represented as (Equation 10): 

 

    EJH            (10) 

 

Identifying H to the Equation 8 we can to determine the structural parameters of the 

system. And doing the same to the Equation 9 we can determine the system inputs. 

 

 

3. GENERAL STRUCTURE OF THE STATE OBSERVER: KALMAN FILTER  

 

Considering a linear system, invariant and observable in the time (Equation 11): 
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where: x(t) is the state vector n x 1, u(t) is the input vector p x 1, y(t) is the output vector k x 

1, A is the matrix of system n x n (dynamic matrix), B is the matrix of distribution n x p (matrix 

of inputs), C is the matrix of measures k x n, being n the order of the system, p the number of 

inputs u(t), and k the number of outputs y(t). The vector   is called noise of excitement in the 

state and represents a disturbance in the system and the vector   is called noise in the 

sensor [12]. Due to stochastic nature of the vectors   and , in the Kalman Filter, they have 

certain statistical properties, corresponding to the white Gaussian noise, stationary (invariant 

in the time) and not correlated between itself. 
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Now we can to define the matrixes   and , they are called of intensity of the 

noise   and , respectively, and matrices symmetrical and positive are defined (Equation 12): 

 

0  ,0  TT          (12) 

 

Given the assumptions mentioned above, the problem of optimum estimate of the state 

vector x  in presence of white noises (as vectors of state as the measured variable) can be 

formulated to find optimum value (filter of Kalman) that it generates an estimate x  for the real 

state vector x , so that minimizes the covariance of the error estimation )()()( txtxte   

(Equation 13):  
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KF            (13) 

 

In according to restriction Equation 11, Kalman and Bucy had proved that the best 

structure for the Kalman filter (among all the possible structures, linear and nonlinear) when 

the dynamics of the system is linear and the noises are white and Gaussians is the following 

one (Equation 14): 

 

           txCtytuBtxAtxS KFKF        :
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In which KF  is the matrix of the state observer,   tx is the state vector of the observer.  

 

 

3.1. Filter Algebraic Riccati Equation (Fare) 

 

The solution of the optimization problem can be found in literature. Since in the present 

work the main interest is the application of the control methodologies, we present here 

without test the solution for this problem. The optimum gain KF for the Kalman filter is given 

by the following relation (Equation 15): 

 

1 T
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In which KFS  is defined like a symmetrical and positive matrix satisfying the Riccati 

equation  for the Kalman filter  (FARE) (Equation 16): 
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4. METHOD OF THE STATE OBSERVERS WITH UNKNOWN INPUTS 

 

The state observers where all the inputs of the system must be known and available have 

great utility in the case where only one input to the control system. In the cases where the 

system is submitted the unknown inputs or disturbance which cannot be measured or the 

measurement is very difficult or simply impossible, the performance of observer can very be 

poor. In this work was developed a methodology of diagnose of faults using observers of 

state in which its input is considered unknown or partially unknown in which the Proportional 

and Integral observer is used to estimate the unknown inputs, in which, the gain of this 

observer is determined for the gain given by the Kalman Filter. After the identification of the 

unknown inputs these are used for the detection of possible faults that are occurring in the 

systems. For this, the Kalman Filter was used to generate unknown states. 

A very convenient representation for systems with these characteristics is as indicated for 

the following equation (Equation 17): 

 

     

 











)( 

  )( :
txCty

tvBtuBtxAtxS dd         (17) 

 

In which: 

)(tx  is a state vector n x 1,  tu  is a input vector r x 1,  ty  is a output vector m x 1,  tvd  is 

a vector of disturbance or unknown input p x 1, A  is a matrix of system n x n (dynamic 

matrix), B  is a matrix of distribution n x r (matrix of input), C  is the matrix of measures m x n 

and dB  is the matrix distribution of disturbance p x n, being n the order of the system, r the 

number of inputs u(t), m the number of outputs y(t) and p the number of disturbance vd (t). 

The estimate problem to the state of a linear and invariant system in the time with known 

and unknown inputs has been subjects of researching in the last decades and with 

considerable importance because in real system, there are many situations where the 

disturbance are present or some inputs are inaccessible, then a conventional observer which 

all the inputs are known can not be used. This way, an observer capable of estimate the 

state for linear system with partially unknown inputs, not sensible to disturbance, can be of 

great utility.  
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The idea is projecting an observer who is capable of estimate the disturbance vd. The 

FIGURE 1 suggests the function of this observer. 

 

Figure 1: Observer with unknown inputs 

 

 

4.1. Modeling of the Observer with Unknown Inputs  

 

In according this approach, we verify that the dynamics of the disturbance vector satisfies 

the differential equations following (Equations 18 and19)): 

 

   twctv dd            (18) 
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          (19) 

 

Which w represents the disturbance state contained in the matrix Ad and the matrix Cd 

indicates like the disturbance is dependent of this state. The choice of these matrices 

depends on the kind of the disturbance. Thus, for example, in the case where the 

disturbance vd is constant, a convenient choice for this is that matrix Ad = 0 and Cd = I (I is a 

identity matrix). Arranging the Equation 17 with Equtions 18 and 19 we get a increased 

model of state (Equation 20): 
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It is verified in the equation above that w is not controllable through of u. But, in general, it 

is observable [11] and with this, is possible to project an observer for this system that 
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estimate as variable x as w. Thus, an observer of full order for this new system will be 

(Equation 21): 
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In which the matrix  TTT KKK
21  to guarantees stability of the observer. In the same 

form, we have (Equation 22): 
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4.2. Proportional-Integral Observer 

 

When the spectrum of disturbance does not contain high frequencies, the observer of the 

section (2) can be used considering Ad = 0 and Cd = I getting a simplification in the model. In 

this case the corresponding part to the estimation the disturbance vector becomes in a bank 

of integrators and the corresponding part to the estimation the state vector becomes in 

proportional and integral to the residual: )(ˆ)( txCty  . This observer is called proportional-

integral or PI and has superior properties comparing with the proportional observer of full 

order. The observer proportional-integral is capable estimate any disturbance (constant, 

linear and nonlinear) but it has to be slower than the constant of time of integral action and 

the number of measurements can’t be minor that the number of disturbance. Increasing the 

integral gain is possible to reject the faster disturbance, however, this has a negative effect 

decreasing the stability of the observer. Using the Equation 22, we have for the case of 

proportional-integral observer (Equations 23 and 24): 
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The necessary and enough condition for the existence of the observer is that the pair (Aa, 

Ca) has been, in the least, observable, thus it is possible to place the eigenvalues of the 

following matrix of the complex plan: 
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In this work the gain of observer PI is determined by the gain gotten for Kalman Filter 

presented in section (3.1). 

 

 

4.3. Example 

 

Following is presented an example of determination of an unknown input in a robotic arm 

as shown in FIGURE 2. 

 

 

Figure 2: flexible arm of a robot with unknown input (disturbance) from the weight. 

 

One mathematical model can be represented by the state Equation 17 in which the 

matrices are given by: 
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In which: 

)(1 t  : Angular displacement of the robot arm ( )0(1 =15°) 

)(2 t  : Angular displacement in output of the reduction box ( )0(2 =15°). 

)(1 t  : Angular speed of the robot arm ( )0(1 =0). 

)(2 t  : Speed in the output of the box of reduction ( )0(2 =0). 
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V: Voltage of armor of motor DC (= square shaped Wave of 5 V and 3 rad/s). 

I: Inertia of the arm robot (= 0.4Kg m2). 

K: Torsional stiffness of the spring (= 1 N m/rad). 

JM: Inertia equivalent of the motor including reduction box (= 0,0424 kg m2)  

BM: Viscous friction in the motor (= 0,0138 N m s/rad). 

Ke: Momentum Gain for the motor (= 0,0403 N m/V). 

To simulate the system was used the Runge Kutta method, in which it is considered as 

output unknown a nonlinear force from the weight of the arm and equal the Td = M g l sin 

( 2 ) with M = 1 Kg, g = 9,8 Kg ms -2 and l = 0,3 m. The variable of state estimated by 

observer PI does not consider the force nonlinear and the PI observer can estimate this force 

(disturbance). For PI observer, the nonlinear force is considered as being an interferential 

input to the system. In the FIGURE 3 it is presented the real input and the estimate for the 

observer. 

 

 

Figure 3: Unknown input estimated through PI observer 

 

4.4. Project of State Observers  

 

The project of a system is presented in the FIGURE 4 functioning with state observers, 

where if verifies the known excitement force u(t), unknown inputs vd (t), the measured 

outputs y(t), the observers PI used to identify the unknown input, the global and robust 

observers to the parameters subject to faults s1…, sn and a unit of logical decision. The 

observer of global state is responsible for the detection of the fault, the robust state observer 

is responsible for the location of the same one. The global observer is a copy of the original 
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system, and analyzes all the system detecting possible faults. The robust state observer can 

detect the fault if this occurs in the parameter for which it was projected. We have to project a 

bank of robust observer, each one in relation to a parameter to be monitored, to become 

possible a good location of fault. 

When the system is functioning adequately, without indications of faults, the observer of 

global state answers equal the real system. When one component of the system in question 

starts to fail, the state observer feels the influence of this process quickly. The objective is 

using this effect of the state observer to locate and to quantify the fault in the mechanical 

system. The global and robust observers are modeled, in this work, using the methodology of 

the Kalman Filter because with this the noise in the system is better worked. They are put in 

a bank of observers and the RMS values of the differences between the real signs in 

displacement (measured) and the generated for the observers are analyzed in a unit of 

logical decision that it analyzes the trend of the progression of the fault and sets in motion, 

when will be necessary, an alarm system. The alarm system can be initialized when we have 

a parameter variation. This is on line process and the model of PI observer  must be 

changed during all the process where the fault is occurring, with possibility to identify the 

disturbance with good accuracy. 

  

      Figure 4: System of Robust Observation.       Figure 5- Truss Structure with 20 bars 

 

 

5. SIMULATION AND RESULTS FOR A TRUSS STRUCTURE WITH 20 BARS  

 

To validate the methodology of identification and location of faults applied the mechanical 

systems using the state observer, filter of Kalman, with forces unknown identified through PI 

observers, was simulated a truss structure with 20 bars as shown in the FIGURE 5. For this, 

we used the finite elements method to be able to simulate the structure, where each bar 
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represents a composite element for two joins and each join has two degrees of freedom (dof) 

being displacement in x and y. Considering that the structure has restrictions in the joins 1 

and 2, we have a system with 16 dof, as shown in the FIGURE 5, the system was excited in 

the join 9 and 10 in the direction of y with harmonic forces of 300 N and 500 N and 

frequencies of 250 rad/s and 3700 rad/s,  in that order. The force applied in join 9 is 

considered unknown and will be determined by observer PI, as be seen in the FIGURE 7. 

All the elements that compose the truss are isoperimetric with the following properties:  = 

7850 kg/m3, E = 200GPa, height = 2.0cm, width = 3.0cm. All the bars in the x direction have 

2.0m and in the y direction have length equal 0.5m. We   considered during the simulation a 

low proportional damping the matrix of mass and the stiffness of the system given for: 

C=1.0e-10*K+1.0e-04*M. The output of this system was gotten through the method of 

Runge-Kutta of fourth order with 4096 points in the interval of 1.0 s, of this form, was used 

only the output of the displacement in the direction x in joins 3 and 7, with this we initiated the 

identification and location process of the fault which the structure was submitted simulating to 

fault we used a reduction in the area of bar four of 30%. To validate the robustness of the 

Kalman Filter for presence of noises in the signs, it was added, to the input, a white noise 

with energy equal 5% of the value of the energy of the input sign u(t). 

The bank of robust observers is generated for the parameters subjected to the faults with 

percentile variation of 10% in the area of each bar. Was considered, in this work, that all the 

bars of the system are susceptive the occurrence of a possible fault. In the FIGURE 6 the is 

presented the inverse values of differences RMS found between the “measured” sign in the 

structure and the signs generated for the global observers (0% of fault) and for the robust 

observers, reducing in 10% the value of each subject parameter to fault. In FIGURE 6 could 

be located and be quantified the fault provoked in bar 4 with 30% of reduction in this 

parameter. 
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Figure 6: Bank of robust observers generated       Figure 7: Estimated input by PI observer 
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6. EXPERIMENTAL RESULTS 

 

A dynamic system of shake tables constituted of metallic stainless steel blades 

constructed and these blades represent the stiffness to the system; plates of aluminum for 

construction of the tables and rubber to simulate viscous damping. The rubbers are fixed 

between the blades, as if it can observe in the FIGURE 8, the structure was modeled like a 

system of three degrees of freedom with discrete parameters. The structural parameters had 

been determined using techniques of experimental modal analysis, for this, the parameters 

of mass, damping and stiffness had been determined for each table separately. In the 

TABLE 1 the results are presented. Being unattached the three tables, it was gotten excited 

inferior table with a harmonic force and the acquisition of the signals during 1,0 s and with 

2048 points in this interval, for this, using DASYLAB software with four channel for signals 

acquisition, where the three first channel had been used for acquisition of the signals of 

displacement and the last channel for determination of the excitement force. The signal used 

was of displacement, therefore the answers measured for the accelerometers had been 

integrated two times, using, for this, the Conditioner/Amplifier of signals Nexus of the 

BRUELL that have this function. 

 

 

Table 1: Space parameters identified for the structure from analyze modal experimental 

classic 

Table Inferior Intermediary Superior 

M (kg) 6.644 4.619 1.889 

K (kN/m) 275.367 114.489 104.993 

C (N s/m) 100.042 36.360 29.660 
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Figure 8: Test Rig-Vibratory System 

 

The fact to measure the excitement force of the system had the objective of comparison 

and verification of the method efficacy. In the FIGURE 9 can be verified  the inputs estimated 

through the orthogonal functions by way the Fourier, Legendre and Chebyshev methods, as 

can be seen in the Equation 9 during the identification of the inputs had been used 100 terms 

of expansion as seen in the work [6].  

 

 

Figure 9: Input identified through Fourier, Legendre and Chebyshev methods, 

respectively.  

 

For the fault detection was used only the output of the displacement measured in the 

inferior table, with this, we initiated the identification and location process of the fault a plate 

of the superior table was removed and was verified a reduction of 8,9% in the stiffness of this 

parameter. The bank of robust observers is generated for the parameters subjected to the 

faults with percentile variation of 1% in the stiffness of the tables. In the FIGURE 10 are 

presented the inverse values of differences RMS found between the measured sign in the 

structure and the signs generated for the global observers (0% of fault) and for the robust 
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observers, reducing in 1% the value of each subject parameter to fault. In FIGURE 10 could 

be located and quantified the fault provoked in the superior table in the region of 9% of 

reduction in the stiffness by way the inputs identified through Fourier, Legendre and 

Chebyshev methods, in that order. 

 

 

 

 

Figure 10: Fault detection and location through Fourier, Legendre and Chebyshev 

methods. 

 

The good result gotten during the force and parameters identifications is, in large part, due 

to high simplicity and linearity of the analyzed system. 

 

7.  CONCLUSIONS 

 

In this work was developed a methodology of diagnose of faults using state observers. It 

was used the Kalman Filter to the construction of bank of observers, and in this case the 

observer needs that all the inputs are known or with white noise because it is the only kind of 

interference that we can used to project the Kalman Filter. Here the inputs are identified by 

the way orthogonal functions or Proportional and Integral observer. With this gain the states 

identified by PI observer reject the inputs unknown. It was presented a robotic arm, in which, 

it was possible to identify the external force due the mass of the arm using PI observer. A 

diagnose of fault was carried using a truss structure of 20 bars in which were considered two 

inputs, being that one was unknown and identified by PI observer. The experimental 

validation of the methodology was carried through from a simple system of three degrees of 

freedom, with force estimated using orthogonal functions. The fault was well identified for all 
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functions used. When we consider the time computational necessary for the assembly of the 

bank of robust observers to the parameters subject to faults, this time is relatively high, but in 

the practical the bank of state observers is assembled only one time, of this form during the 

acquisition of signs on-line in a structure is not necessary to assemble the bank of observers 

given who this must be assembled previously. With this, we can conclude this method can be 

used during processes of detection of faults on-line. 
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