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ABSTRACT  
This paper presents a proposal to solve the Inverse Problem of Lindenmayer in the deterministic and 
free-context L-system grammar class. The proposal of this paper is to show a methodology that can 
obtain an L-system rule from a string representing the development stage of any object. The strings 
used in the tests were obtained from known grammars. However, they are dealt with as of having an 
unknown origin to assure the impartiality of the methodology. The idea presented here consists in the 
regression of growth of the string analyzed by an algorithm built based on relations of growth obtained 
from string generated by known deterministic grammars. In the tests carried out, all the strings 
submitted to the proposed algorithm could be reverted to an L-system rule identical to the original rule 
used in the synthesis of the string. It is also interesting to observe that the obtaining of these rules 
occurred practically in real time with tested grammars. 
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1. INTRODUCTION 
 

 

 Grammatical systems of parallel rewrite, known as Lindenmayer Systems or L-

systems [1], have become the target of scientific focus of many researchers. In the 

original conception of the L-systems only biological proposals were presented, 

destined for the representation of development processes of living creatures with 

very simple graphic representations [2]. However, considering the potentialities 

visualized in those systems, other more improved approaches have been presented, 

including non-biological proposals and more sophisticated mechanisms for graphic 

representations of those processes. L-systems  have been used, for instance, for the 

generation of fractals [3], [6]; such as Peano curves [4]; for the realistic image 

synthesis of trees and some plants [5], [6]; for the analysis of cellular layers 

development process [7]; for the generation of digital straight lines [8]; for the 

recognition of shapes in Computer Vision [9], [10]; for the generation of musical notes 
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[11];  for searching of neural network structures [12]; for the virtual creatures 

synthesis for simulation environments [13]; for artificial neural synthesis [14]-[17], and 

many other approaches.  

 Nevertheless, the great problem of the studies that use the L-systems is 

determining what appropriate system can conveniently represents the development 

process of the desired object. This problem can be understood as a case of Inverse 

Problem, a widely studied theory in areas such as geophysics [18], [19], physics [20], 

research with medical images [21], [22], and others. This theory, in general, deals 

with a problem where one intends to infer the representation of a model based on the 

observation and analysis of data belonging to the same system in that model [23]-

[26]. In the L-system theory this problem is known as the Inverse Problem of 

Lindenmayer. 

 This work intends to collaborate with the solution the Inverse Problem of 

Lindenmayer. For that, a methodology is proposed to explore the self-similarity 

characteristics and parallel rewrite of those systems. The idea consists in reverting 

one string, derived of a determined state of development of one self-similar structure, 

in one L-system rule. This rule must allow the reproduction of that object. It is 

assumed that those strings have already been obtained by some process, that is, this 

work does not intend to discuss the methods of obtaining those strings. 

 Thus, this work is structured in the following way: in section 2 the correlated 

studies are presented, indicating the state-of-the-art the Inverse Problem of 

Lindenmayer. Next, in section 3, the formalism of L-systems, including some 

concepts of formal languages is presented. Section 4 brings the proposed 

methodology in this paper. In section 5, the results obtained and the discussions 

about these results are presented, followed by the conclusions in section 6. 

 

2. CORRELATED STUDIES 
 
 In the field of Formal Languages Theory, the question of the Inverse Problem 

is known as Grammatical Inference, many times referred only as Grammatical 

Induction. The processes of grammatical inferences have been studied, for instance, 

in areas such as machine learning [27], computational biology [28]-[30], pattern 

recognition in structured documents [31], speech recognition [32], etc. Great efforts 

have been made in the attempt to achieve methods capable of assisting us in the 
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search of formalisms for the studies of these processes in these diverse areas. It is 

cited, for instance, the work of SCHWEHM e OST [33] that have proposed a method 

for obtaining of stochastic regular grammars using a genetic algorithm in a high-

power multiprocessed system. Their work presents interesting results, since the 

obtained grammar in their test differs in just centesimal values in the probabilistic 

weights of the original rules, used as a model. 

 The Inverse Problem appears as a particularity of Grammatical Inference, now 

acting in the context of Lindenmayer Systems formalism [34]. This it means that, in 

the search processes for L-system grammars, the inherent properties in these 

systems must be taken into account. 

 We can cite the work of KOZA [35] as one of the first works related to Inverse 

Problem which presents a methodology to discover rules for the Lindenmayer system 

based on a genetic algorithm. Koza was able to obtain a similar rule proposing some 

manual adjustments to make it identical to the original rule. In his tests, Koza used an 

L-system grammar to construct the fractal of the Quadratic Koch Island used in the 

tests. 

 RUDOLPH and ALBER work‟s [36] deals with a proposal to solve the Inverse 

Problem of Lindenmayer in the towers transmission project. The proposal is based 

on the execution of evolutionary algorithms that intends to converge the grammar 

generation in the genotype of intended object. The grammar rule obtained in each 

case was not revealed. 

 Another work that can be referred is the COSTA and LANDRY [37]. In this 

work, a method to describe tree-shape fractals and to reconstruct these models is 

formally proposed. That proposal consists in reconstructing an object by means of a 

grammar generated by a genetic algorithm from the sequences of images obtained 

around the original object. Their results point to similar shapes to the samples in the 

majority of tests. The rules of the grammar found, used in the reconstruction of the 

object, were not presented. In spite of the contribution of those studies, it is evident 

that the question about the Inverse Problem of Lindenmayer still challenges the 

researchers. 

 

3. LINDENMAYER SYSTEMS 
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 Formally introduced by the biologist Aristid Lindenmayer in 1968 [1], based on 

the Chomsky grammars [2], the Lindenmayer System, or just L-systems, was initially 

proposed for the representation of development processes of living creatures. It 

deals with a grammatical system of rewrite where the productions are substituted in 

parallel in each development phase. This confers to these grammar classes the 

recursive potentiality to easily represent complex objects. 

 The formal definition of an L-system grammar, very similar to the definition of 

the Chomsky grammar, can be make by a sorted quadruple {V, T, P, S} where V 

represents the set of variable symbols (V{}). 

 Normally, the {S, F} symbols are used in V. T represents the set of terminal 

symbols; usually the symbols {+,-, [,]} are used, where T can be an empty set. P 

represents the set of production rules, where PVV*. S represents the axiom, were 

S  V+. The big difference between Chomsky grammars and the L-systems is in the 

application order of the production rules. Whilst in the conventional grammars the 

production rules are applied in a sequential way, in the L-systems the application of 

the rules occurs in a simultaneous and parallel way along whole the string that will be 

rewritten. 

 The L-systems are used almost always associated with the graphic 

interpretation of their productions. The mechanism of graphic interpretation, 

proposed by Prusinkiewicz [2], is based on the turtle geometry of the Logo language 

[38] and became the classic mechanism for graphic interpretations at the L-systems. 

An example of L-system grammar and its graphic interpretation of production in the 

forth level, indicated by n, is presented in Fig. 1. The angle used in this example is 

indicated by α. 

 
Fig. 1 One example of the L-system grammar 
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4. OBTAINMENT OF L-SYSTEMS RULES   
 
 Firstly, the proposal presented in this paper determines the limits of 

exploration in the space of the classes in L-systems grammars. Next, the 

methodology on these limits is explained. These considerations are presented in the 

next sections. 

 

A. Delimitation of the Problem 

 The Inverse Problem of Lindenmayer is seen as a problem of high complexity 

and it is not a simple task to solve it. This paper explore the class of Deterministic 

and Free-Context L-system grammars, and grammars that present the restriction of 

having the axiom formed by one symbol,  and the grammar being constituted by one 

production rule. The grammar presented in Fig. 1 is an example in this category. It is 

also important to consider that strings used in this paper were obtained from known 

grammars, with the previous restrictions. However they were dealt as being of 

unknown origin, in order to allow the validation of the proposal. The intention is to 

present a methodology that allows finding an L-system rule using, for this, just one of 

these strings, regardless the production level at which such string has been 

originated. The rule found will have to be able to reproduce the string again. 

 The process of parallel and simultaneous rewrite that the string has gone 

through the productions is the only known factor. All the other information for solution 

of the problem is obtained from the analyzed string. 

B. Proposed Methodology 

 Conceptually, the idea presented here is very intuitive. Observe in Fig. 2 the 

production scheme of an L-system grammar. This is the same grammar that was 

presented before in section 3. In this figure is possible to notice that, from the first 

production level, all of the others levels are composed exactly by the same parts. 

These parts are the results of the format of the grammar production rule, determined 

by the presence of terminal symbols acting as separators of the evolution points. The 

balloons indicate these exact points along the production string. It is noticeable that, 

after the exhaustive rewrite of the productions, these points will always be separated 

by the same terminal symbols. Then, one understands that the process of rewrite of 
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the L-systems confers to the production of these grammars a characteristic behavior. 

 Therefore, the idea of this paper is to revert at once the growth of the string 

promoted by the rewrite process, in all these evolution point indicated by balloons, as 

it is shown by the scheme of Fig. 3. 

 

 
Fig. 2 L-system production scheme 

 

 
Fig. 3 Scheme of string reversion  

 

 To assure that the reversion process results in a rule potentially capable of 

reproducing the analyzed string, it is necessary to consider some important factors: 

i.  The quantity of `F' s in an L-system rule that could result in the analyzed 

string will have to be found; 

ii. It will be necessary to verify if the reversion promoted in the analyzed string 

produces the same amount of `F' s found in ( i ); 

iii. It will be necessary to verify if the string obtained in the reversion is capable 

of producing the same amount of terminal symbols presented in the analyzed 

string. 

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 63



 Thus, this proposal of reversion can be organized and expressed in the way of 

the presented algorithm in Fig. 4. Obviously, the formalization of these concepts 

requires the consideration of other factors. In the process of searching for the 

generating rule, the great problem is identifying the points of evolution in the string so 

that one can effect the regression process. 

 

 
Fig. 4 Algorithm 1 

 

 It is possible to establish the relation between the quantity of „F‟s present in 

the string and its growth order during the productions through the analysis of known 

grammar string. This relation can be expressed by “(1)”. In the equation, Ft 

represents the quantity of „F‟ characters counted in the string, Fq represents the 

quantity of „F‟s present in the production rules, and n represents the level of the 

production of string. 

 
n

qt FF 
 

(1) 

 According to this paper proposal, one can notice that only Ft can be known 

counting `F' characters present in the string that will be analyzed. This count is 

indicated by CountSimbol()  in line 1 of the algorithm. If the return is 0 or 1, the 

string cannot represent a state of development of an object and the algorithm stops 

running and the result is w. The conditional deviation in line 3 is responsible for this 

verification. The return of w also occurs in case the algorithm does not find any rule. 

 Thus, we proposed an iterative search in Fq to find values for the n exponent 

that can result in the already known value Ft, that is, one can find what quantity of 

„F‟s in an L-system rule would be responsible for the production of the quantity of „F‟s 

present in the analyzed string, and at which this would be possible in the n level. 
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Knowing the possible values of Fq and n is also fundamental to identify the evolution 

points in the analyzed string. The iteration in Fq ends in the highest possible value of 

an exponentiation capable of producing Ft, which is equivalent to the integer part of 

its own square root, according to line 4. 

 Therefore, considering the relation of Equation 1, the inverse relation can be 

established by means of a logarithmic function, shown in Equation 2, to determine 

the values for n that satisfy the equality. This is the relation expressed in line 5 of the 

algorithm. 

 n
F

F
F

q

t
tFq


ln

ln
log

 

(2) 

 Once the iteration in Fq obtains an integer value for n, since Ft cannot be the 

resultant of a fractionary exponent, it is possible to know the probable format of the 

production rule of the analyzed string, that is, it is already possible to know how many 

`F' s will be present in the probable production rule and at which level the analyzed 

string may have been produced. This assures the first consideration presented in ( i ). 

The presence of the conditional deviation, in line 6, makes it possible for the 

algorithm to skip to the next iteration in case the obtained value of n is not an integer 

number. 

 In line 8, the Slice() function is required, whose parameters  are: the values of 

Ft and Fq and the initial string. As the value of Fq indicates how many „F‟s will be 

present in the sought rule, and each „F‟ will be responsible for the production of a part 

of the string, so there must be equal Fq parts in this string and each one of these 

parts must have k „F‟ characters, where k = Ft  / Fq. Thus, this function must identify 

and return to the sub-string corresponding to one of these parts. This function was 

conveniently implemented to return to the first part, locating the contained sub-string 

since the first occurrence of „F‟ until k. 

 In line 9, the function Replace() is required, whose parameters are: the str 

string, the oldpatt sub-string returned by the previous function, and the „F‟ symbol. 

This function locates and substitutes all the occurrences of oldpatt in the str string 

for „F‟. This function also returns how many substitutions are made. A conditional 

deviation verifies if the quantity of substitutions corresponds to the number of parts 

that the probable rule should have, that is, if it is equal to Fq. If this condition is not 

verified, it means that the analyzed string cannot have been produced by a rule 
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formed by the of current Fq and n values and, therefore, the next iteration in Fq is 

executed; else, str already represents a rule capable of producing w and it is 

returned as a solution to the problem and the algorithm is finished. The conditional 

deviation existing in line 9 guarantees the consideration made in ( ii ). 

 However, some production rules can cause the accumulation of terminal 

symbols in the string. It is the case, for instance, of a rule such as F-F  . In Fig. 5, 

the production of this rule is presented in 3 levels, indicating at each level the parts 

produced by the `F' s of the previous level. This figure also indicates the sub-string 

returned by the function slice() applied to the production of the third level, followed 

by the substitution of this sub-string by the function replace(). At the end, the 

accumulation of terminal symbols indicated by the balloons can be noticed. 

 
Fig. 5 Accumulation of terminal characters 

 

 The TerminalClear() function in the line 10 is required to eliminate these 

terminal symbols accumulated during the production levels. This function receives as 

parameters the str string resulting from the line before, and the value of n. This 

function removes these symbols in the same proportion they were accumulated 

during the rewrite process. That is made by identifying how many characters were 

accumulated by the production level before the first occurrence of „F‟. In such a way, 

the quantity of terminal symbols existing before the first occurrence of „F‟ is divided 

by n. The quotient obtained indicates how many terminal symbols must be removed 

before „F‟ from each production level. One can notice that the first level must be 

excluded from the calculation, since it represents the production rule per se, then, the 

quotient obtained is multiplied by n-1. The product represents the total amount of 

terminal symbols that must be removed before all the occurrences of „F‟ in str. The 

function must execute the same operation for the existing symbols after each 

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 66



occurrence of „F‟ in its due proportion. In case it is verified that the string does not 

present accumulation of terminal symbols, no alteration is made in str. 

 Finally, in line 11 of algorithm in Fig. 4, the function isPossible() receives the 

rule string resulting from the previous function, the values of Fq  and n, besides St, 

that indicates how many terminal symbols there are in w.  This function is required to 

verify if the string obtained by the reversion process is capable of producing the 

same quantity of terminal symbols existing in w, without the need to effect the 

productions until the level indicated by n. As in the rewrite process the terminal 

symbols are accumulated level by level, from the rule itself, it would be enough to 

know how many terminal symbols would be present in each level, and add them up. 

 It must also be noticed that for each existing `F' in string to be derived, the 

same quantity of terminal symbols present in the production rule will be inserted, plus 

the symbols already existing resulting from the last derivation. In such a way, the 

quantity of terminal symbols existing in one particular production level could be 

determined by Equation 3, in which Fq and T represent, respectively, the quantity of 

`F' s and the quantity of terminal symbols present in the rule. 

 TFS
n

i

i

qr 




1

0

 (3) 

 The returned value in Sr by Equation 3, representing the quantity of terminal 

symbols that would be present in the production rule until the level n, must be 

compared with St. In case these values are equal, the result of the function will be 

true and the algorithm will return rule as a solution to the problem; otherwise, the 

algorithm will execute the next iteration, if there is any, or it will be finished returning 

w. Thus, this function assures the final consideration made in (iii). 

 It is also important to observe that, for convenience‟s sake, the implemented 

algorithm returns the first rule found capable of reproducing the string supplied for 

analysis, being ended in the sequence. However, if the algorithm were not 

interrupted, in some cases, it would be possible to find other rules potentially capable 

of reproducing the same entered string. This is the case, for instance, of the string 

“FFFFFFFFFFFFFFFF” that may have been produced by the application of one rule 

formed only by “FF”, in four levels of rewrite, or it may have been generated by the 

application of the rule “FFFF”, after the second level of production. The complexity of 

formation of the rules would just imply a slower or faster development process. 

 

Vetor, Rio Grande, v.20, n.2, p.58-72, 2010. 67



 

 

5. DISCUSSION AND RESULTS 

 

 Based on the above considerations, we performed the analysis of several 

strings produced by grammars known in different productions levels. The proposed 

methodology was applied on two groups of strings:  

 

 Group (a) - Strings produced by 20 grammars, and some of them are variations 

of grammars widely known, the most obtained from [34]: in this group, for each 

grammar, strings were generated from the level one until the level six of 

production. One hundred twenty different strings were tested. 

 Group (b) - Strings produced by randomly generated grammars: a grammar 

generator of random sizes and variable complexity was developed. One million 

different grammars were generated. Each of these grammars was used to 

produce a string at the level four of iteration. Next, all the strings were submitted 

to the process reversal. 

 

 The grammar of the random generator was built based on a non-deterministic 

grammar. In this grammar, primitive strings can lead to a Context-free, Deterministic 

L-system rule. The strings used as primitive rules were: [F], + F, F +, F-, F- and FF. 

From an F axiom, the rewriting process is performed a random number of times (no 

more than 10 to avoid generating a very large rule). This process also ensures that 

no rule containing only one 'F' is returned. The code of this grammar generator is 

reproduced in the algorithm in Fig. 6. This code is executed in accordance with the 

number of grammars to be generated. In this algorithm, has a function called 

randomN() on line 3, with the parameter 10, which returns an randomly generated 

integer between 1 and 10. This number indicates how many times the process of 

rewriting in the formation of a new rule will be performed. In line 7, a similar function 

is called randomly to obtain a primitive string contained in G, which is the randomG() 

function. The G set contains primitive strings which will be used in the rewriting 

process to form new rules. 
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Fig. 6 Algorithm 2 

 Rules obtained in the implementation of the algorithm in Fig. 6, were stored on 

a list to be excluded from all duplicated rules, leaving only different rules. 

The observations of the implementation of the proposed methodology for the strings 

of the (a) and (b) groups are: 

 The proposed algorithm in Fig. 4 was able to obtain the L-system rule in all the 

strings submitted to the test, both for strings of the (a) group and for the (b) 

group, returning the identical rule to the on used in the synthesis of the tested 

string; 

 The search time of the L-system rules of these strings presented variations 

according to the length of the submitted strings. However, the execution of the 

algorithm showed that the solution is found inside of an extremely fast time 

interval. For instance, in the analysis of one of the largest tested string, having 

7.872.138 characters (about 1836 pages in a common text editor), the rule was 

obtained, on average, in 688 milliseconds; 

 Other relevant information, which can be obtained by the algorithm in Fig. 4, is 

the level of production where the rule found can reproduce the analysed string. 

This production level is given by the value n at the moment in which that a rule is 

found. 

 

 All the results presented were obtained in a system with a 1.800Mhz, 512MB 

RAM memory CPU configuration, running Windows XP SP2. The algorithms were 

developed using IDE / RAD Delphi7 Object Pascal language through. 
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6. CONCLUSION 
 
 This paper presented a proposal to solve the Inverse Problem of Lindenmayer 

in a subclass of L-system grammars. The tests carried out until now have produced 

results 100% exact. It was possible to obtain a rule that allowed the reproduction of 

the analyzed string in all the tests. We can notice that it is possible to obtain identical 

rules to the original rules used in the synthesis of the samples. Moreover, the 

execution of the algorithm to obtain these rules has evidenced an extremely fast 

execution time. 

 Future studies will involve the study of methods to automatic obtain strings, 

from known objects, or still, to obtain to methods that support other groups of L-

system grammars, besides the class supported by this proposal, as for instance, 

grammar with more than one production rule. 
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